一种基于改进YOLOv8的唐卡目标检测方法

    公开(公告)号:CN118505983B

    公开(公告)日:2024-10-29

    申请号:CN202410964537.3

    申请日:2024-07-18

    Abstract: 本发明公开了一种基于改进YOLOv8的唐卡目标检测方法,包括以下步骤:(1)获取需要检测的唐卡图片或视频并放入test文件并进行预处理;(2)构建改进YOLOv8网络模型,将深度可分离‑分组卷积‑SE注意力模块DGST替换特征金字塔层C2f中的瓶颈层Bottleneck;其中,DGST模块包括:SE注意力机制层、分组卷积以及神经网络ConvFFN模块;将需要检测的图片或视频输入改进YOLOv8网络进行训练;(3)将得到的模型输出数据进行处理,得到预测结果;本发明通过对YOLOv8模型的改进,提高检测的精确度,模型参数在一定程度上减少,实现模型轻量化。

    一种基于改进YOLOv8的唐卡目标检测方法

    公开(公告)号:CN118505983A

    公开(公告)日:2024-08-16

    申请号:CN202410964537.3

    申请日:2024-07-18

    Abstract: 本发明公开了一种基于改进YOLOv8的唐卡目标检测方法,包括以下步骤:(1)获取需要检测的唐卡图片或视频并放入test文件并进行预处理;(2)构建改进YOLOv8网络模型,将深度可分离‑分组卷积‑SE注意力模块DGST替换特征金字塔层C2f中的瓶颈层Bottleneck;其中,DGST模块包括:SE注意力机制层、分组卷积以及神经网络ConvFFN模块;将需要检测的图片或视频输入改进YOLOv8网络进行训练;(3)将得到的模型输出数据进行处理,得到预测结果;本发明通过对YOLOv8模型的改进,提高检测的精确度,模型参数在一定程度上减少,实现模型轻量化。

Patent Agency Ranking