一种基于多尺度注意力模块的分心驾驶行为检测方法

    公开(公告)号:CN115082698B

    公开(公告)日:2024-04-16

    申请号:CN202210744125.X

    申请日:2022-06-28

    Abstract: 本发明公开一种基于多尺度注意力模块的分心驾驶行为检测方法,包括以下步骤:得到标注对应的分心驾驶行为信息的图像数据集;结合多尺度注意力模块MPSA,改进MoblieNetV2特征网络模型,用于提取分心驾驶行为特征并输出预测驾驶行为概率,其中,改进的MoblieNetV2特征网络模型包括多个串联的倒瓶颈残差模块,且在每个倒瓶颈残差模块中加入多尺度注意力模块,定义为多尺度倒瓶颈残差模块,多尺度倒瓶颈残差模块包括分组卷积层、多尺度注意力模块层MPSA以及特征提取层,设置训练超参数,将训练集图像输入到改进后的MoblieNetV2特征网络模型,得到训练完备的分心驾驶行为检测模型;将待测图像输入训练得到的分心驾驶行为检测模型中,输出驾驶行为类型。稳定性好,鲁棒性强。

    一种基于多尺度注意力模块的分心驾驶行为检测方法

    公开(公告)号:CN115082698A

    公开(公告)日:2022-09-20

    申请号:CN202210744125.X

    申请日:2022-06-28

    Abstract: 本发明公开一种基于多尺度注意力模块的分心驾驶行为检测方法,包括以下步骤:得到标注对应的分心驾驶行为信息的图像数据集;结合多尺度注意力模块MPSA,改进MoblieNetV2特征网络模型,用于提取分心驾驶行为特征并输出预测驾驶行为概率,其中,改进的MoblieNetV2特征网络模型包括多个串联的倒瓶颈残差模块,且在每个倒瓶颈残差模块中加入多尺度注意力模块,定义为多尺度倒瓶颈残差模块,多尺度倒瓶颈残差模块包括分组卷积层、多尺度注意力模块层MPSA以及特征提取层,设置训练超参数,将训练集图像输入到改进后的MoblieNetV2特征网络模型,得到训练完备的分心驾驶行为检测模型;将待测图像输入训练得到的分心驾驶行为检测模型中,输出驾驶行为类型。稳定性好,鲁棒性强。

Patent Agency Ranking