-
公开(公告)号:CN111507967B
公开(公告)日:2023-06-02
申请号:CN202010306354.4
申请日:2020-04-17
Applicant: 华南农业大学
IPC: G06T7/00 , G06T7/11 , G06N3/08 , G06N3/0464
Abstract: 本发明公开了一种自然果园场景下的芒果高精度检测方法,包括:建立自然场景下的芒果数据库;构建基于Mask Scoring R‑CNN的初步网络结构;在ROI Align层后增加一个并行训练的BoxIOU分支,为RPN输出的候选框预测IOU得分;测试阶段BoxIOU分支预测的IOU得分与相应的分类置信度进行耦合,再将耦合后的分值替代原本的分类置信度作为后处理阶段的非极大抑制的排列依据;利用训练后的BoxIOU MangoNet进行芒果果实的检测和分割。该方法为果实目标筛选出定位更准确的检测框,简单有效,能够解决自然果园场景下受复杂环境干扰的检测分割难题。
-
公开(公告)号:CN110598658B
公开(公告)日:2022-03-01
申请号:CN201910882353.1
申请日:2019-09-18
Applicant: 华南农业大学
Abstract: 本发明公开了一种母猪哺乳行为的卷积网络识别方法,首先利用一级卷积网络——Mask R‑CNN检测视频帧中侧卧母猪的关键点,以获取视频帧中母猪侧卧哺乳区域,克服在场景中非哺乳区域仔猪运动对哺乳区域时空特征提取的干扰;然后,以视频帧中哺乳区域的RGB图像序列和光流图像序列作为二级卷积网络——卷积双流网络输入,提取哺乳区域中哺乳行为的时空信息,实现哺乳行为的识别。本发明的模型是基于数据驱动的模型,避免了人工设计行为特征,提升了哺乳行为特征的表达能力,为母猪与仔猪间交互式行为——哺乳行为自动监测提供了新的技术方法。
-
公开(公告)号:CN110598658A
公开(公告)日:2019-12-20
申请号:CN201910882353.1
申请日:2019-09-18
Applicant: 华南农业大学
Abstract: 本发明公开了一种母猪哺乳行为的卷积网络识别方法,首先利用一级卷积网络——Mask R-CNN检测视频帧中侧卧母猪的关键点,以获取视频帧中母猪侧卧哺乳区域,克服在场景中非哺乳区域仔猪运动对哺乳区域时空特征提取的干扰;然后,以视频帧中哺乳区域的RGB图像序列和光流图像序列作为二级卷积网络——卷积双流网络输入,提取哺乳区域中哺乳行为的时空信息,实现哺乳行为的识别。本发明的模型是基于数据驱动的模型,避免了人工设计行为特征,提升了哺乳行为特征的表达能力,为母猪与仔猪间交互式行为——哺乳行为自动监测提供了新的技术方法。
-
公开(公告)号:CN111507967A
公开(公告)日:2020-08-07
申请号:CN202010306354.4
申请日:2020-04-17
Applicant: 华南农业大学
Abstract: 本发明公开了一种自然果园场景下的芒果高精度检测方法,包括:建立自然场景下的芒果数据库;构建基于Mask Scoring R-CNN的初步网络结构;在ROI Align层后增加一个并行训练的BoxIOU分支,为RPN输出的候选框预测IOU得分;测试阶段BoxIOU分支预测的IOU得分与相应的分类置信度进行耦合,再将耦合后的分值替代原本的分类置信度作为后处理阶段的非极大抑制的排列依据;利用训练后的BoxIOU MangoNet进行芒果果实的检测和分割。该方法为果实目标筛选出定位更准确的检测框,简单有效,能够解决自然果园场景下受复杂环境干扰的检测分割难题。
-
公开(公告)号:CN110619632B
公开(公告)日:2022-01-11
申请号:CN201910882496.2
申请日:2019-09-18
Applicant: 华南农业大学
Abstract: 本发明公开了一种基于Mask R‑CNN的芒果实例对抗分割方法,包括:建立自然场景下的芒果分割数据集;构建基于Mask R‑CNN的分割网络;将构建的所述Mask R‑CNN分割网络视为生成网络,在其Mask分支上添加一个判别网络;所述生成网络从输入图像中得到芒果的预测实例掩膜;所述判别网络的输入为Real或Fake的芒果实例;将SmoothL1+IOU Loss替换Mask分支原来的二值交叉熵;所述生成网络与判别网络以交替对抗的策略进行优化训练,从而形成对抗网络模型;将训练后的所述对抗网络模型,进行芒果果实的实例分割,检测和分割的指标都得到了明显的提高。
-
公开(公告)号:CN110619632A
公开(公告)日:2019-12-27
申请号:CN201910882496.2
申请日:2019-09-18
Applicant: 华南农业大学
Abstract: 本发明公开了一种基于Mask R-CNN的芒果实例对抗分割方法,包括:建立自然场景下的芒果分割数据集;构建基于Mask R-CNN的分割网络;将构建的所述Mask R-CNN分割网络视为生成网络,在其Mask分支上添加一个判别网络;所述生成网络从输入图像中得到芒果的预测实例掩膜;所述判别网络的输入为Real或Fake的芒果实例;将SmoothL1+IOU Loss替换Mask分支原来的二值交叉熵;所述生成网络与判别网络以交替对抗的策略进行优化训练,从而形成对抗网络模型;将训练后的所述对抗网络模型,进行芒果果实的实例分割,检测和分割的指标都得到了明显的提高。
-
-
-
-
-