一种芒果采摘点识别方法

    公开(公告)号:CN109711325B

    公开(公告)日:2023-05-23

    申请号:CN201811587011.9

    申请日:2018-12-25

    Abstract: 本发明公开了一种芒果采摘点识别方法,包括以下步骤:采集芒果的图像,建立自然场景下的芒果采摘图像库;建立基于Mask R‑CNN网络的芒果果实分割模型;计算每个果实的长轴、短轴以及质心;利用自底向上层次聚类法判断是否成簇;若芒果果实成簇,则识别成簇果实母枝并在母枝上定位采摘点;若芒果为单果,则分割和识别该果实的果梗,在果梗上确定采摘点。本发明利用基于Mask R‑CNN网络的芒果果实分割模型进行果实实例分割,解决自然果园场景下光线变化、遮挡、重叠导致的检测分割难题,具有分割精准、适用场景多的优点。

    一种芒果采摘点识别方法

    公开(公告)号:CN109711325A

    公开(公告)日:2019-05-03

    申请号:CN201811587011.9

    申请日:2018-12-25

    Abstract: 本发明公开了一种芒果采摘点识别方法,包括以下步骤:采集芒果的图像,建立自然场景下的芒果采摘图像库;建立基于Mask R-CNN网络的芒果果实分割模型;计算每个果实的长轴、短轴以及质心;利用自底向上层次聚类法判断是否成簇;若芒果果实成簇,则识别成簇果实母枝并在母枝上定位采摘点;若芒果为单果,则分割和识别该果实的果梗,在果梗上确定采摘点。本发明利用基于Mask R-CNN网络的芒果果实分割模型进行果实实例分割,解决自然果园场景下光线变化、遮挡、重叠导致的检测分割难题,具有分割精准、适用场景多的优点。

    一种基于改进Faster-R-CNN的哺乳母猪姿态识别方法

    公开(公告)号:CN108830144A

    公开(公告)日:2018-11-16

    申请号:CN201810416468.7

    申请日:2018-05-03

    Abstract: 本发明涉及一种基于改进Faster-R-CNN的哺乳母猪姿态识别方法,包括以下步骤:S1、采集哺乳母猪的RGB-D视频图像,并建立母猪姿态识别深度视频图像库;S2、对基础ZF网络增加深度、并引入残差结构,设计成具有高精度、实时性和鲁棒性的CNN网络结构;S3、使用设计的CNN网络结构,构建Faster-R-CNN模型结构,并对Faster-R-CNN模型结构引入Center Loss监督信号,与SoftmaxLoss联合构成分类损失函数,最终建立改进的Faster-R-CNN母猪姿态识别模型;S4、使用训练集训练Faster-R-CNN母猪姿态识别模型,使用测试集测试模型性能,最终筛选最佳性能模型,用于哺乳母猪姿态识别。

    一种基于改进Faster-R-CNN的哺乳母猪姿态识别方法

    公开(公告)号:CN108830144B

    公开(公告)日:2022-02-22

    申请号:CN201810416468.7

    申请日:2018-05-03

    Abstract: 本发明涉及一种基于改进Faster‑R‑CNN的哺乳母猪姿态识别方法,包括以下步骤:S1、采集哺乳母猪的RGB‑D视频图像,并建立母猪姿态识别深度视频图像库;S2、对基础ZF网络增加深度、并引入残差结构,设计成具有高精度、实时性和鲁棒性的CNN网络结构;S3、使用设计的CNN网络结构,构建Faster‑R‑CNN模型结构,并对Faster‑R‑CNN模型结构引入Center Loss监督信号,与SoftmaxLoss联合构成分类损失函数,最终建立改进的Faster‑R‑CNN母猪姿态识别模型;S4、使用训练集训练Faster‑R‑CNN母猪姿态识别模型,使用测试集测试模型性能,最终筛选最佳性能模型,用于哺乳母猪姿态识别。

Patent Agency Ranking