一种基于树型奇偶机的新型密钥交换方法

    公开(公告)号:CN112751671B

    公开(公告)日:2022-07-05

    申请号:CN202011620056.9

    申请日:2020-12-30

    Abstract: 本发明公开了一种基于树型奇偶机的新型密钥交换方法,包括:S1,通信双方均在本地生成树型奇偶机网络模型;S2,通信双方均生成滑动窗口;S3,通信双方产生相同的随机向量;S4,将随机向量x输入网络模型;模型分别输出τa、τb;S5,判断τa和τb是否相等;S6,按照Hebbian的更新规则更新模型的权值,并且将结果true保存至滑动窗口中;S7,重复执行步骤S3‑S6,直到双方的权值向量的Hash值完全相同,得到双方的网络权值Ka和Kb。本发明实现神经网络自同步的性质来达到密钥交换的目的。以加入动态学习率后的更新规则更新双方的模型的权值的方法可以降低网络同步所需的次数,加快网络的同步速度。

    一种基于深度注意自编码器的零水印构造方法

    公开(公告)号:CN113781284A

    公开(公告)日:2021-12-10

    申请号:CN202110734868.4

    申请日:2021-06-30

    Abstract: 本发明公开了一种基于深度注意自编码器的零水印构造方法,包括水印构造和水印提取;水印构造:构造零水印M,将零水印M在知识产权信息数据库进行注册,使水印信息得到保存;水印提取包括:获得待测图像特征:将待检测载体图片将待检测载体图片作为自编码器输入,编码器输出待检测载体图片的特征矩阵B′;获取二值矩阵:利用矩阵B′的每个元素的值B′x,y与矩阵B′的均值T′的大小关系构造二值矩阵C′;恢复水印:将矩阵C′与零水印M进行异或运算得到恢复的水印图像W′。本发明利用卷积自编码器和注意力机制来提取图像的特征,提取的特征更稳定和具有代表性,本发明采用了对抗训练,这保证了模型的鲁棒性,使得该发明的水印算法能够抵抗大部分攻击。

    一种基于深度注意自编码器的零水印构造方法

    公开(公告)号:CN113781284B

    公开(公告)日:2024-11-19

    申请号:CN202110734868.4

    申请日:2021-06-30

    Abstract: 本发明公开了一种基于深度注意自编码器的零水印构造方法,包括水印构造和水印提取;水印构造:构造零水印M,将零水印M在知识产权信息数据库进行注册,使水印信息得到保存;水印提取包括:获得待测图像特征:将待检测载体图片将待检测载体图片作为自编码器输入,编码器输出待检测载体图片的特征矩阵B′;获取二值矩阵:利用矩阵B′的每个元素的值B′x,y与矩阵B′的均值T′的大小关系构造二值矩阵C′;恢复水印:将矩阵C′与零水印M进行异或运算得到恢复的水印图像W′。本发明利用卷积自编码器和注意力机制来提取图像的特征,提取的特征更稳定和具有代表性,本发明采用了对抗训练,这保证了模型的鲁棒性,使得该发明的水印算法能够抵抗大部分攻击。

    一种基于树型奇偶机的新型密钥交换方法

    公开(公告)号:CN112751671A

    公开(公告)日:2021-05-04

    申请号:CN202011620056.9

    申请日:2020-12-30

    Abstract: 本发明公开了一种基于树型奇偶机的新型密钥交换方法,包括:S1,通信双方均在本地生成树型奇偶机网络模型;S2,通信双方均生成滑动窗口;S3,通信双方产生相同的随机向量;S4,将随机向量x输入网络模型;模型分别输出τa、τb;S5,判断τa和τb是否相等;S6,按照Hebbian的更新规则更新模型的权值,并且将结果true保存至滑动窗口中;S7,重复执行步骤S3‑S6,直到双方的权值向量的Hash值完全相同,得到双方的网络权值Ka和Kb。本发明实现神经网络自同步的性质来达到密钥交换的目的。以加入动态学习率后的更新规则更新双方的模型的权值的方法可以降低网络同步所需的次数,加快网络的同步速度。

Patent Agency Ranking