-
公开(公告)号:CN117324015A
公开(公告)日:2024-01-02
申请号:CN202311208977.8
申请日:2023-09-19
Applicant: 华北电力大学
IPC: B01J27/24 , C02F1/30 , C02F1/72 , C02F101/34 , C02F101/36 , C02F101/38
Abstract: 一种FeOxSey纳米墙催化材料制备及其在光芬顿降解氟喹诺酮类抗生素中的应用。结合超分子预聚合法、溶剂热法和煅烧刻蚀法,研发了Se掺杂氧化铁纳米墙与改性g‑C3N4的复合异质结催化材料。通过超分子预聚合调控g‑C3N4形成多孔的微观结构,在其表面原位构筑氧化铁纳米墙,构建稳定的界面电场,并利用煅烧刻蚀过程将Se引入氧化铁晶格结构中,调控Fe的配位环境,增加其对有效的HFe2O2+2的吸附性能与Fe3+循环体系。在可见光条件下,可有效降低H,2FOS/CNO2向·表面能够形成OH转化的反应能垒。本发明所制备的异质结催化材料,光芬顿反应10min对FQs系列抗生素的降解率均可达95%以上。
-
公开(公告)号:CN117324015B
公开(公告)日:2024-04-16
申请号:CN202311208977.8
申请日:2023-09-19
Applicant: 华北电力大学
IPC: B01J27/24 , C02F1/30 , C02F1/72 , C02F101/34 , C02F101/36 , C02F101/38
Abstract: 一种FeOxSey纳米墙催化材料制备及其在光芬顿降解氟喹诺酮类抗生素中的应用。结合超分子预聚合法、溶剂热法和煅烧刻蚀法,研发了Se掺杂氧化铁纳米墙与改性g‑C3N4的复合异质结催化材料。通过超分子预聚合调控g‑C3N4形成多孔的微观结构,在其表面原位构筑氧化铁纳米墙,构建稳定的界面电场,并利用煅烧刻蚀过程将Se引入氧化铁晶格结构中,调控Fe的配位环境,增加其对H2O2的吸附性能。在可见光条件下,FOS/CN表面能够形成有效的Fe2+与Fe3+循环体系,可有效降低H2O2向·OH转化的反应能垒。本发明所制备的异质结催化材料,光芬顿反应10min对FQs系列抗生素的降解率均可达95%以上。
-