-
公开(公告)号:CN114841235A
公开(公告)日:2022-08-02
申请号:CN202210310369.7
申请日:2022-03-28
Applicant: 华北电力大学
Abstract: 一种基于卷积神经网络的可解释性的负荷识别方法,属于负荷识别领域。该方法利用卷积神经网络(Convolutional neural networks,CNN)进行特征提取,从而实现用电负荷模式的分类识别。由于CNN的“黑箱”操作,提出了两种可解释性方法,一种是利用表征可视化技术将卷积层中的卷积层和池化层进行可视化表示,可以提取到图像中的底层和高层特征,通过底层和高层负荷特征来判断负荷类型,从而对模型内部进行可解释性,另一种是将负荷图片利用反卷积神经网络对图片进行复现并进行各层的展示,使大家更为信服,从而增强模型的可解释性。本发明完全基于数据驱动,克服了配电网复杂环境下,基于深度模型在算法效率和准确性、可解释性多方面的局限性。使用该方法避免了传统机器学习识别精度不够的问题,设计模型的可解释性,并改善深度学习模型的“黑盒”特点,提高了识别精度并对模型进行了可解释性研究。