-
公开(公告)号:CN115455195A
公开(公告)日:2022-12-09
申请号:CN202211038548.6
申请日:2022-08-26
Applicant: 华北电力大学
IPC: G06F16/36 , G06F40/295 , G06F40/30 , G06N5/02
Abstract: 本发明公开了属于自然语言处理领域一种基于BERT和知识嵌入的加工工艺关系抽取方法,该方法包括如下步骤:步骤1:构建BERT层,进行文本特征提取,得到字维度的特征向量Z和句子向量S;步骤2:字维度的特征向量Z与实体信息联合提取实体特征向量E;步骤3:融合知识嵌入,动态调整句子向量S权重,使模型更加关注句子中与实体信息有关的语义信息C;步骤4:将所述融合实体信息的特征向量C与实体特征E进行拼接,得到多特征融合向量M;步骤5:多特征融合向量M输入分类器,计算关系类别。
-
公开(公告)号:CN115034222A
公开(公告)日:2022-09-09
申请号:CN202210630961.5
申请日:2022-06-06
Applicant: 华北电力大学
IPC: G06F40/295 , G06F16/35 , G06N3/04 , G06N3/08
Abstract: 本发明公开了属于自然语言处理领域一种基于机械零件加工文献数据的多维度命名实体识别方法,该方法包括如下步骤:步骤1:整理机械零件加工手册上的工艺知识,通过人工与算法结合的方法对所述文献进行数据处理工作,获得机械零件加工文献的语料;步骤2:利用部分机械零件加工文献无标注语料信息对Bert模型进行预训练,得到训练好的预训练模型;把所述机械零件加工文献的标注语料输入训练好的预训练模型中进行增量训练,得到字维度的特征向量Z;步骤3:将所述字维度的特征向量Z输入基于BiLSTM的神经网络模型,并引入注意力机制动态调整输入权重,得到融合全文信息的特征向量C;步骤4:将所述融合全文语义信息的特征向量C输入Mixture of Entity Experts(MOEE)框架判断每一个符号是否为实体并得到实体的特征向量E;步骤5:实体特征向量E输入CRF模型,计算标签结果,最后的到命名实体识别结果。
-