-
公开(公告)号:CN117115573A
公开(公告)日:2023-11-24
申请号:CN202311388102.0
申请日:2023-10-25
Applicant: 华侨大学
IPC: G06V10/764 , G06V10/26 , G06V10/80 , G06V10/774 , G06V10/52
Abstract: 本发明提供了一种有毒生物图像分类识别方法、装置、设备及存储介质,先通过获取图像样本,调用基于均衡采样策略和逆向采样策略交叉训练过的分类模型基于所述图像样本的分辨率进行分割成多组切块;接着,基于特征提取的阶段调整所述多组切块的数量以及采样频率进行特征提取,以生成不同阶段的多尺度特征图;最后,对所述不同阶段的多尺度特征图进行融合后通过融合特征分类器进行预测,以生成所述图像样本的预测结果,其中,预测结果为所述图像样本是否为有毒生物,通过使用自适应样本平衡采样训练策略,缓解训练集类别样本数量不均衡造成的影响,有效的提高了在对有毒生物识别时的识别率。
-
公开(公告)号:CN117115573B
公开(公告)日:2024-01-05
申请号:CN202311388102.0
申请日:2023-10-25
Applicant: 华侨大学
IPC: G06V10/764 , G06V10/26 , G06V10/80 , G06V10/774 , G06V10/52
Abstract: 本发明提供了一种有毒生物图像分类识别方法、装置、设备及存储介质,先通过获取图像样本,调用基于均衡采样策略和逆向采样策略交叉训练过的分类模型基于所述图像样本的分辨率进行分割成多组切块;接着,基于特征提取的阶段调整所述多组切块的数量以及采样频率进行特征提取,以生成不同阶段的多尺度特征图;最后,对所述不同阶段的多尺度特征图进行融合后通过融合特征分类器进行预测,以生成所述图像样本的预测结果,其中,预测结果为所述图像样本是否为有毒生物,通过使用自适应样本平衡采样训练策略,缓解训练集类别样本数量不均衡造成的影响,有效的提高了在对有毒生物识别时的识别率。
-