基于加权流形消歧和动态局部标记相关性的偏多标记分类方法、装置、设备及介质

    公开(公告)号:CN119089335B

    公开(公告)日:2025-02-18

    申请号:CN202411579104.2

    申请日:2024-11-07

    Applicant: 华侨大学

    Abstract: 基于加权流形消歧和动态局部标记相关性的偏多标记分类方法、装置、设备及介质,涉及偏多标记学习技术领域。偏多标记分类方法,能够高效准确的处理复杂数据集。首先,将候选标记转化为逻辑标记矩阵,构建特征空间与标记分布的关系,并据此设计损失函数。其次,通过计算语义相似度,利用k‑近邻方法确定训练实例的近邻,形成相似图权重矩阵。接着,计算初始局部标记相关性矩阵,并动态更新,结合相似图权重矩阵,引导标记分布学习。然后,构建目标函数,迭代优化模型参数,直至收敛,实现标记消歧。最后,训练好的模型可用于预测待测实例所属的所有类别,具有高准确性和鲁棒性,有效应对噪声标记的挑战,为偏多标记分类问题提供了高性能的解决方案。

    基于加权流形消歧和动态局部标记相关性的偏多标记分类方法、装置、设备及介质

    公开(公告)号:CN119089335A

    公开(公告)日:2024-12-06

    申请号:CN202411579104.2

    申请日:2024-11-07

    Applicant: 华侨大学

    Abstract: 基于加权流形消歧和动态局部标记相关性的偏多标记分类方法、装置、设备及介质,涉及偏多标记学习技术领域。偏多标记分类方法,能够高效准确的处理复杂数据集。首先,将候选标记转化为逻辑标记矩阵,构建特征空间与标记分布的关系,并据此设计损失函数。其次,通过计算语义相似度,利用k‑近邻方法确定训练实例的近邻,形成相似图权重矩阵。接着,计算初始局部标记相关性矩阵,并动态更新,结合相似图权重矩阵,引导标记分布学习。然后,构建目标函数,迭代优化模型参数,直至收敛,实现标记消歧。最后,训练好的模型可用于预测待测实例所属的所有类别,具有高准确性和鲁棒性,有效应对噪声标记的挑战,为偏多标记分类问题提供了高性能的解决方案。

Patent Agency Ranking