一种基于改进的长短期记忆网络的电力负荷预测方法

    公开(公告)号:CN111985719B

    公开(公告)日:2023-07-25

    申请号:CN202010878240.7

    申请日:2020-08-27

    摘要: 本发明公开了一种基于改进的长短期记忆网络的电力负荷预测方法,采用最大信息系数初步筛选历史负荷这一特征,并结合考虑负荷相关因子带来的影响,采用最大相关最小冗余算法对历史负荷进行进一步刷选,将筛选后的特征集及作为模型的输入,采用改进的长短记忆网络进行电力负荷预测,得到的预测结果与实际的电网负荷进行验证,证明模型的实用性。本发明的预报方法(H‑ILSTM)精确考虑了电力负荷及其影响负荷的相关因子,有效的提高了电力负荷预测的精度,对电网运行的安全性和经济性有着一定的提高。

    一种基于改进的长短期记忆网络的电力负荷预测方法

    公开(公告)号:CN111985719A

    公开(公告)日:2020-11-24

    申请号:CN202010878240.7

    申请日:2020-08-27

    摘要: 本发明公开了一种基于改进的长短期记忆网络的电力负荷预测方法,采用最大信息系数初步筛选历史负荷这一特征,并结合考虑负荷相关因子带来的影响,采用最大相关最小冗余算法对历史负荷进行进一步刷选,将筛选后的特征集及作为模型的输入,采用改进的长短记忆网络进行电力负荷预测,得到的预测结果与实际的电网负荷进行验证,证明模型的实用性。本发明的预报方法(H-ILSTM)精确考虑了电力负荷及其影响负荷的相关因子,有效的提高了电力负荷预测的精度,对电网运行的安全性和经济性有着一定的提高。

    一种基于邻域门长短期记忆网络的风速预测方法及系统

    公开(公告)号:CN109063939B

    公开(公告)日:2020-08-18

    申请号:CN201811296424.1

    申请日:2018-11-01

    IPC分类号: G06Q10/04 G06N3/02 G01W1/10

    摘要: 本发明属于风速预测技术领域,公开了一种基于邻域门长短期记忆网络的风速预测方法及系统,分别采用皮尔逊相关系数和最大信息系数来探究变量间的线性和非线性相关性以筛选风速相关因子;在相关性分析的基础上利用格兰杰因果关系检验探究风速及风速因子在统计意义上的因果关系;将因果关系的结构分为5类,并通过“分解‑虚变量‑剪枝”的方法将所有类型的因果关系统一为一种等价树因果关系结构;针对等价树因果关系结构,提出基于邻域门的长短期记忆网络模型来预测风速。本发明的预报方法(NLSTM)精确考虑了风速及风速因子之间的因果关系,有效提高了风速的预测精度,对风电的应用和电网的调度具有至关重要的作用。