-
公开(公告)号:CN113725410B
公开(公告)日:2023-07-04
申请号:CN202110905506.7
申请日:2021-08-05
Applicant: 华中科技大学 , 广东瑞科美电源技术有限公司
IPC: H01M4/36 , H01M4/58 , H01M4/62 , H01M10/0525
Abstract: 本发明提供了一种偏磷酸锂原位包覆的三元正极材料及其制备方法和应用。该制备方法为:S1,按预定比例将磷酸二氢铵、碳酸锂和乙醇充分混合,加热溶解后再加入预定量的三元正极材料,分散均匀得到混合料;而后烘干处并两次联合煅烧处理,得到煅烧产物;S2,将所述煅烧产物加入到PVDF溶液中,分散8~18h;再加入导电炭黑,继续分散8~18h,得到混合浆料;S3,将所述混合浆料涂布在铝箔上,涂布后依次进行鼓风干燥和真空干燥两步干燥处理,制备得到偏磷酸锂原位包覆的三元正极材料。本发明通过原位包覆偏磷酸锂能有效提高三元正极的界面稳定性,抑制界面副反应的发生;解决了偏磷酸锂由于不溶解带来的包覆不均的问题,且该方法操作比较简单,适合产业化的应用。
-
公开(公告)号:CN113725410A
公开(公告)日:2021-11-30
申请号:CN202110905506.7
申请日:2021-08-05
Applicant: 华中科技大学 , 广东瑞科美电源技术有限公司
IPC: H01M4/36 , H01M4/58 , H01M4/62 , H01M10/0525
Abstract: 本发明提供了一种偏磷酸锂原位包覆的三元正极材料及其制备方法和应用。该制备方法为:S1,按预定比例将磷酸二氢铵、碳酸锂和乙醇充分混合,加热溶解后再加入预定量的三元正极材料,分散均匀得到混合料;而后烘干处并两次联合煅烧处理,得到煅烧产物;S2,将所述煅烧产物加入到PVDF溶液中,分散8~18h;再加入导电炭黑,继续分散8~18h,得到混合浆料;S3,将所述混合浆料涂布在铝箔上,涂布后依次进行鼓风干燥和真空干燥两步干燥处理,制备得到偏磷酸锂原位包覆的三元正极材料。本发明通过原位包覆偏磷酸锂能有效提高三元正极的界面稳定性,抑制界面副反应的发生;解决了偏磷酸锂由于不溶解带来的包覆不均的问题,且该方法操作比较简单,适合产业化的应用。
-
公开(公告)号:CN113097472B
公开(公告)日:2022-09-27
申请号:CN202110223515.8
申请日:2021-03-01
Applicant: 华中科技大学
Abstract: 本发明提供了一种层状无锂正极材料容量调控方法。该方法包括:对于一种层状电极材料,测试其层间距,记为d1;若层状电极材料的层间距d1>1nm,则选取包含锂离子的电解液作为工作电解液;若层状电极材料的层间距d1≤1nm,则选取包含直径d2满足如下关系式的阳离子的电解液作为工作电解液:0nm<d1‑d2<0.4nm,即可提升层状电极材料的比容量。本发明通过研究不同层间距的层状电解材料的比容量与电解液阳离子直径的关系,得到一种通过调控阳离子组成实现对不同层间距的层状电解材料比容量的提升,从而能够快速地为已经选定的层状电解材料配制出高效的工作电解液,具有重要的研究和应用价值。
-
公开(公告)号:CN113394394A
公开(公告)日:2021-09-14
申请号:CN202110550000.9
申请日:2021-05-20
Applicant: 华中科技大学
IPC: H01M4/58 , H01M10/052
Abstract: 本发明提供了一种双金属氟化物及其制备方法和在无锂正极中的应用。该制备方法为:选用过渡金属基有机金属框架材料作为金属框架前体,选用常用的过渡金属硝酸盐作为掺杂元素源,通过对过渡金属基有机金属框架材料进行其他种类过渡金属元素的掺杂,由此获得多金属阳离子骨架,然后进一步对其进行氟化处理,制备获得的双金属氟化物。该双金属氟化物拥有均匀的孔结构,并且具备高离子/电子混合导电支架结构,使金属氟化物的容量能够被高效利用,有效克服了现有技术中传统金属氟化物阴极存在的容量利用率低、电压滞后大、循环稳定性差的技术缺陷。
-
公开(公告)号:CN112670602A
公开(公告)日:2021-04-16
申请号:CN202010934418.5
申请日:2020-09-08
Applicant: 华中科技大学
Abstract: 本发明提供了一种锂离子电池三元正极材料的再生修复处理方法。该方法首先将失效的锂离子电池三元正极材料加入到DMF中除去电解质,再通过NMP浸泡洗涤使表面的CEI膜的厚度≤10nm,以去除表面的PVDF以及CEI膜中的有机锂盐成分,然后进行退火处理进一步去除多余的PVDF;再进行水热补锂处理后,根据CEI膜的厚度确定高温煅烧温度和时间,使得表面残留的LiOH以及CEI膜中的无机锂盐与空气中的二氧化碳反应生成碳酸锂熔融盐,进而和材料表面的岩盐相反应生成修复好的层状三元材料。本发明针对失效的正极材料表面的CEI膜的结构和组成,对现有的水热修复技术进行改进,从而得到性能优异的再生正极材料。
-
公开(公告)号:CN117650224A
公开(公告)日:2024-03-05
申请号:CN202311827912.1
申请日:2023-12-27
Applicant: 华中科技大学
IPC: H01M4/04 , H01M4/1397 , H01M4/58 , H01M10/54
Abstract: 本发明公开一种磷酸铁锂正极材料锂铁反位缺陷的高效修复再生方法及其应用,所述高效修复再生方法包括以下步骤:S1、在惰性气体气氛下,通过瞬态高温的方法将包含锂铁反位缺陷的磷酸铁锂正极极片上的带有锂铁反位缺陷的磷酸铁锂正极粉末剥离下来,得到带有锂铁反位缺陷的磷酸铁锂正极粉末;S2、对带有锂铁反位缺陷的磷酸铁锂正极粉末进行快速升温至高温,并于所述高温下进行短时间的高温热处理,快速冷却,即实现锂铁反位缺陷的高效修复。本发明采用高温短时加热方法,快速的升温过程(10~105℃/s)和秒级热处理时间(1~60s),实现了磷酸铁锂正极材料锂铁反位缺陷的高效修复再生,不仅大幅减少了能量的消耗,且连续生产效率高,能有效地降低成本。
-
公开(公告)号:CN114695946B
公开(公告)日:2023-08-25
申请号:CN202210257825.6
申请日:2022-03-14
Applicant: 华中科技大学
IPC: H01M10/0525 , H01M10/058 , H01M4/48
Abstract: 本发明提供了一种快充型柔性锂离子电池及其制备方法,包括正负电极、电解液、隔膜和外壳;正负电极的其中一个电极的材料为rGO/Nb16W5O55活性材料;rGO/Nb16W5O55活性材料为表层包覆有rGO的Nb16W5O55材料;电解液的浓度为0.5~1.5M,其电解质为阴阳离子可解离的锂盐或钠盐。本发明利用具有高离子传导性和电子传导性的rGO/Nb16W5O55作为电极材料,并配合限定浓度的电解液制得高性能快充型柔性锂离子电池;该电池具有良好的快速充电性能,其循环寿命高、实用性强;对于探索具有高速率性能、容量和安全特性的电池系统具有技术启示,对开发快充型柔性锂离子电池具有重要社会经济学意义。
-
公开(公告)号:CN112670602B
公开(公告)日:2023-07-25
申请号:CN202010934418.5
申请日:2020-09-08
Applicant: 华中科技大学
Abstract: 本发明提供了一种锂离子电池三元正极材料的再生修复处理方法。该方法首先将失效的锂离子电池三元正极材料加入到DMF中除去电解质,再通过NMP浸泡洗涤使表面的CEI膜的厚度≤10nm,以去除表面的PVDF以及CEI膜中的有机锂盐成分,然后进行退火处理进一步去除多余的PVDF;再进行水热补锂处理后,根据CEI膜的厚度确定高温煅烧温度和时间,使得表面残留的LiOH以及CEI膜中的无机锂盐与空气中的二氧化碳反应生成碳酸锂熔融盐,进而和材料表面的岩盐相反应生成修复好的层状三元材料。本发明针对失效的正极材料表面的CEI膜的结构和组成,对现有的水热修复技术进行改进,从而得到性能优异的再生正极材料。
-
公开(公告)号:CN114956182B
公开(公告)日:2023-03-21
申请号:CN202110210241.9
申请日:2021-02-25
Applicant: 华中科技大学
IPC: H01M4/48 , C01G41/02 , H01M10/0525
Abstract: 本发明提供了一种微米棒状铌钨氧化物及其制备方法和应用。该微米棒状铌钨氧化物具有一维离子通道,可供电解质中的离子定向扩散。本发明通过将NbC在800~1100℃的空气氛围中高温煅烧,然后与WO3按预设摩尔比混合球磨,再以预设升温速率在空气氛围中升温至1100~1300℃,进行高温煅烧,取出冷却即得到所述微米棒状铌钨氧化物。如此得到的铌钨氧化物在透射电镜下观察到较为规整排列的通道,这个结构可以限制锂离子在材料中的异向传输,形成了一个一维离子通道。锂离子在材料一维离子通道中的快速扩散有助于提高材料的大倍率特性,从而有利于组装高功率储能器件。
-
公开(公告)号:CN114956182A
公开(公告)日:2022-08-30
申请号:CN202110210241.9
申请日:2021-02-25
Applicant: 华中科技大学
IPC: C01G41/02 , H01M4/48 , H01M10/0525
Abstract: 本发明提供了一种微米棒状铌钨氧化物及其制备方法和应用。该微米棒状铌钨氧化物具有一维离子通道,可供电解质中的离子定向扩散。本发明通过将NbC在800~1100℃的空气氛围中高温煅烧,然后与WO3按预设摩尔比混合球磨,再以预设升温速率在空气氛围中升温至1100~1300℃,进行高温煅烧,取出冷却即得到所述微米棒状铌钨氧化物。如此得到的铌钨氧化物在透射电镜下观察到较为规整排列的通道,这个结构可以限制锂离子在材料中的异向传输,形成了一个一维离子通道。锂离子在材料一维离子通道中的快速扩散有助于提高材料的大倍率特性,从而有利于组装高功率储能器件。
-
-
-
-
-
-
-
-
-