-
公开(公告)号:CN108519768B
公开(公告)日:2019-10-08
申请号:CN201810252653.7
申请日:2018-03-26
Applicant: 华中科技大学
IPC: G05B23/02
Abstract: 本发明公开了一种基于深度学习和信号分析的故障诊断方法,本发明方法预先采集工业过程在正常和故障时的数据,并将其划分为训练集和测试集;基于训练集离线训练模型参数,再以测试集检验模型,性能指标为故障诊断的精度,其数值大小表征了模型的泛化性能,亦即对故障的在线诊断能力;该方法作为神经网络的变体,能获取过程操作变量在时域上的物理信息,同时引入的小波分析法可获取过程测量变量的频域信息;此外,该方法采用的深度结构适应了工业大数据的大、快、杂、疑等特点,可将过程操作变量的物理信息,结合以过程测量变量的频率特征,学习到故障的深层级的复杂模式,可有效地进行故障诊断,于在线诊断的测试中显示出优越的泛化能力。
-
公开(公告)号:CN108519768A
公开(公告)日:2018-09-11
申请号:CN201810252653.7
申请日:2018-03-26
Applicant: 华中科技大学
IPC: G05B23/02
Abstract: 本发明公开了一种基于深度学习和信号分析的故障诊断方法,本发明方法预先采集工业过程在正常和故障时的数据,并将其划分为训练集和测试集;基于训练集离线训练模型参数,再以测试集检验模型,性能指标为故障诊断的精度,其数值大小表征了模型的泛化性能,亦即对故障的在线诊断能力;该方法作为神经网络的变体,能获取过程操作变量在时域上的物理信息,同时引入的小波分析法可获取过程测量变量的频域信息;此外,该方法采用的深度结构适应了工业大数据的大、快、杂、疑等特点,可将过程操作变量的物理信息,结合以过程测量变量的频率特征,学习到故障的深层级的复杂模式,可有效地进行故障诊断,于在线诊断的测试中显示出优越的泛化能力。
-
公开(公告)号:CN110033021B
公开(公告)日:2021-04-06
申请号:CN201910172832.4
申请日:2019-03-07
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于一维多路卷积神经网络的故障分类方法,属于工业过程监控技术领域。该方法对传统的二维卷积神经网络做出改进,沿变量方向运用多路并列的一维卷积神经网络,对各变量之间的互相关性进行解构,独立地对各变量进行卷积、池化而提取时序特征信息,所提取的特征更加多样化,鲁棒性更高,克服了传统二维卷积神经网络对输入数据中变量先验排列次序的敏感,更加适用于复杂、高阶的工业过程数据;实验表明,采用本发明提供的基于一维多路卷积神经网络训练得到的故障分类模型,可有效地进行工业过程数据的故障分类,相比常用模型具有更高的泛化能力。
-
公开(公告)号:CN110033021A
公开(公告)日:2019-07-19
申请号:CN201910172832.4
申请日:2019-03-07
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于一维多路卷积神经网络的故障分类方法,属于工业过程监控技术领域。该方法对传统的二维卷积神经网络做出改进,沿变量方向运用多路并列的一维卷积神经网络,对各变量之间的互相关性进行解构,独立地对各变量进行卷积、池化而提取时序特征信息,所提取的特征更加多样化,鲁棒性更高,克服了传统二维卷积神经网络对输入数据中变量先验排列次序的敏感,更加适用于复杂、高阶的工业过程数据;实验表明,采用本发明提供的基于一维多路卷积神经网络训练得到的故障分类模型,可有效地进行工业过程数据的故障分类,相比常用模型具有更高的泛化能力。
-
-
-