-
公开(公告)号:CN109949234A
公开(公告)日:2019-06-28
申请号:CN201910136584.8
申请日:2019-02-25
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于深度网络的视频复原模型训练方法及视频复原方法,包括:从标准的清晰视频中获得多帧清晰图像;对各帧清晰图像进行高斯模糊处理,以得到各帧清晰图像所对应的模糊图像;将连续n帧清晰图像及对应的n帧模糊图像构成的{清晰图像序列,模糊图像序列}对作为一个训练样本,从而得到由所有训练样本构成的训练集;建立由n-1个编解码网络依次连接而成的视频复原模型,用于根据模糊图像In及其前n-1帧模糊图像In-1~I1对模糊图像In进行图像复原;利用训练集对视频复原模型进行训练,从而得到目标视频复原模型。本发明能够提高模糊视频复原的效率和复原效果。
-
公开(公告)号:CN109949234B
公开(公告)日:2020-10-02
申请号:CN201910136584.8
申请日:2019-02-25
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于深度网络的视频复原模型训练方法及视频复原方法,包括:从标准的清晰视频中获得多帧清晰图像;对各帧清晰图像进行高斯模糊处理,以得到各帧清晰图像所对应的模糊图像;将连续n帧清晰图像及对应的n帧模糊图像构成的{清晰图像序列,模糊图像序列}对作为一个训练样本,从而得到由所有训练样本构成的训练集;建立由n‑1个编解码网络依次连接而成的视频复原模型,用于根据模糊图像In及其前n‑1帧模糊图像In‑1~I1对模糊图像In进行图像复原;利用训练集对视频复原模型进行训练,从而得到目标视频复原模型。本发明能够提高模糊视频复原的效率和复原效果。
-