一种免疫检测方法和系统

    公开(公告)号:CN115326716A

    公开(公告)日:2022-11-11

    申请号:CN202211019708.2

    申请日:2022-08-24

    Abstract: 本发明公开了一种免疫检测方法和系统,属于纳米材料测试领域。方法包括:使入射光在交流磁场激励下的功能性磁纳米粒子免疫检定试剂中进行多次反射;将多次反射后的出射光转化为电压信号,并提取免疫检定试剂对应的磁光信号;将免疫检定试剂与待测溶液混合,使入射光在交流磁场激励下的混合溶液中进行多次反射;将多次反射后的出射光转化为电压信号,并提取混合溶液对应的磁光信号;当免疫检定试剂对应的磁光信号与混合溶液对应的磁光信号的差异程度超过预设的阈值时,判定待测溶液中含有目标待测分子。本发明能提高待测分子的检测浓度下限,提高免疫检测的精度和灵敏度;具有免洗的便利性,较现有磁光免疫检测方法操作简单。

    一种免疫检测方法和系统

    公开(公告)号:CN115326716B

    公开(公告)日:2024-11-19

    申请号:CN202211019708.2

    申请日:2022-08-24

    Abstract: 本发明公开了一种免疫检测方法和系统,属于纳米材料测试领域。方法包括:使入射光在交流磁场激励下的功能性磁纳米粒子免疫检定试剂中进行多次反射;将多次反射后的出射光转化为电压信号,并提取免疫检定试剂对应的磁光信号;将免疫检定试剂与待测溶液混合,使入射光在交流磁场激励下的混合溶液中进行多次反射;将多次反射后的出射光转化为电压信号,并提取混合溶液对应的磁光信号;当免疫检定试剂对应的磁光信号与混合溶液对应的磁光信号的差异程度超过预设的阈值时,判定待测溶液中含有目标待测分子。本发明能提高待测分子的检测浓度下限,提高免疫检测的精度和灵敏度;具有免洗的便利性,较现有磁光免疫检测方法操作简单。

    一种基于磁光效应的磁性颗粒成像方法

    公开(公告)号:CN115219433B

    公开(公告)日:2024-07-02

    申请号:CN202210665384.3

    申请日:2022-06-13

    Abstract: 本发明公开了一种磁光效应的磁性颗粒成像方法,属于磁光成像领域。方法包括,对分布有磁纳米粒子的待测生物组织施加磁场,并使用偏振光沿与所述磁场同轴的方向照射待测生物组织;检测偏振光在待测生物组织不同部位的偏转角相关量;通过偏转角相关量解算待测生物组织不同部位的磁纳米粒子浓度。相比现有MPI成像方法使用感应线圈检测粒子磁化信号,本发明方法使用磁光效应进行检测的结果与光路附近的磁性颗粒浓度有关,光路有效面积远小于感应线圈感应范围,成像分辨率更高;同时感应线圈本身金属材质容易产生电磁干扰,结构参数复杂,响应动态范围小,本发明基于磁光效应的成像方式以光学检测的方式克服上述感应线圈缺点,检测的粒子浓度下限更低。

    基于磁纳米粒子法拉第磁光效应的温度测量方法和装置

    公开(公告)号:CN115541047A

    公开(公告)日:2022-12-30

    申请号:CN202211271055.7

    申请日:2022-10-17

    Abstract: 本发明公开了一种基于磁纳米粒子法拉第磁光效应的温度测量方法和装置,属于纳米材料测试技术领域。方法包括,将磁纳米粒子样品放置在目标区域,通过外加直流激励磁场使得磁纳米粒子产生磁化响应;采用偏振光与磁场同轴方向照射磁纳米粒子,与样品发生法拉第磁光效应;将未添加磁纳米粒子的样品作为对照组,对其施加与外加直流激励磁场幅值相等、方向相反的激励磁场,并对出射光进行检测;根据检测得到的出射光计算磁纳米粒子产生的法拉第旋转角;将磁纳米粒子产生的法拉第旋转角与外加直流激励磁场利用郎之万函数进行非线性拟合,得到目标区域磁纳米粒子的温度。本发明可以实现远程且非侵入式的体内温度测量。

    一种基于磁光效应的磁性颗粒成像方法

    公开(公告)号:CN115219433A

    公开(公告)日:2022-10-21

    申请号:CN202210665384.3

    申请日:2022-06-13

    Abstract: 本发明公开了一种磁光效应的磁性颗粒成像方法,属于磁光成像领域。方法包括,对分布有磁纳米粒子的待测生物组织施加磁场,并使用偏振光沿与所述磁场同轴的方向照射待测生物组织;检测偏振光在待测生物组织不同部位的偏转角相关量;通过偏转角相关量解算待测生物组织不同部位的磁纳米粒子浓度。相比现有MPI成像方法使用感应线圈检测粒子磁化信号,本发明方法使用磁光效应进行检测的结果与光路附近的磁性颗粒浓度有关,光路有效面积远小于感应线圈感应范围,成像分辨率更高;同时感应线圈本身金属材质容易产生电磁干扰,结构参数复杂,响应动态范围小,本发明基于磁光效应的成像方式以光学检测的方式克服上述感应线圈缺点,检测的粒子浓度下限更低。

Patent Agency Ranking