一种基于机器学习的车牌检测方法

    公开(公告)号:CN102968646A

    公开(公告)日:2013-03-13

    申请号:CN201210411259.6

    申请日:2012-10-25

    Abstract: 本发明公开了一种基于机器学习的车牌检测方法,首先将原始彩色图像转换为梯度图像;然后结合Adaboost快速检测且虚警率低的特点,采用多尺度遍历搜索方式对车牌目标进行检测;最后将检测结果二值化和形态学处理,根据国内车牌字符特点对检测结果进行评判,标记车牌区域与准伪车牌区域。进一步,还提取准伪车牌区域特征,采用SVM对准伪车牌区域进行多尺度遍历识别,最后对识别结果评判输出。本发明采用梯度图像表示方法,从而将车辆牌照外观表现形式实现统一,利用Adaboost多尺度遍历搜索方式,能快速、有效地从复杂场景中提取出不同车牌;最后结合SVM对准伪车牌区域进行识别,进一步降低了虚警提高了检测率;其在道路交通监控、停车场管理等方面有广泛的应用前景。

    一种基于机器学习的车牌检测方法

    公开(公告)号:CN102968646B

    公开(公告)日:2015-11-04

    申请号:CN201210411259.6

    申请日:2012-10-25

    Abstract: 本发明公开了一种基于机器学习的车牌检测方法,首先将原始彩色图像转换为梯度图像;然后结合Adaboost快速检测且虚警率低的特点,采用多尺度遍历搜索方式对车牌目标进行检测;最后将检测结果二值化和形态学处理,根据国内车牌字符特点对检测结果进行评判,标记车牌区域与准伪车牌区域。进一步,还提取准伪车牌区域特征,采用SVM对准伪车牌区域进行多尺度遍历识别,最后对识别结果评判输出。本发明采用梯度图像表示方法,从而将车辆牌照外观表现形式实现统一,利用Adaboost多尺度遍历搜索方式,能快速、有效地从复杂场景中提取出不同车牌;最后结合SVM对准伪车牌区域进行识别,进一步降低了虚警提高了检测率;其在道路交通监控、停车场管理等方面有广泛的应用前景。

Patent Agency Ranking