-
公开(公告)号:CN108596240A
公开(公告)日:2018-09-28
申请号:CN201810357683.4
申请日:2018-04-20
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于判别特征网络的图像语义分割方法,属于模式识别技术领域。本发明首先将样本集随机分成训练集合,对每个训练集合中的数据进行数据扩增;之后以全卷积网络为基础,分别构建两个子网络:平滑网络和边界网络,并将两个子网络组合成判别特征网络;再将训练集合中的数据输入判别特征网络,并采用正向传播算法和后向传播算法训练网络参数;之后利用交叉熵函数分别计算两个子网络的损失,采用随机梯度下降算法最小化损失函数;最后利用训练后的判别特征网络对待测图片进行分析,预测图像中每个像素所属的类别,形成图像语义分割图输出。本发明方法提出了一种判别特征网络用于,解决了类内不一致和类间差别小的问题。
-
公开(公告)号:CN108596240B
公开(公告)日:2020-05-19
申请号:CN201810357683.4
申请日:2018-04-20
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于判别特征网络的图像语义分割方法,属于模式识别技术领域。本发明首先将样本集随机分成训练集合,对每个训练集合中的数据进行数据扩增;之后以全卷积网络为基础,分别构建两个子网络:平滑网络和边界网络,并将两个子网络组合成判别特征网络;再将训练集合中的数据输入判别特征网络,并采用正向传播算法和后向传播算法训练网络参数;之后利用交叉熵函数分别计算两个子网络的损失,采用随机梯度下降算法最小化损失函数;最后利用训练后的判别特征网络对待测图片进行分析,预测图像中每个像素所属的类别,形成图像语义分割图输出。本发明方法提出了一种判别特征网络用于,解决了类内不一致和类间差别小的问题。
-