基于深度学习的答案抽取方法及系统

    公开(公告)号:CN107729468B

    公开(公告)日:2019-12-17

    申请号:CN201710948835.3

    申请日:2017-10-12

    Abstract: 本发明公开了一种基于深度学习的答案抽取方法及系统,其中,方法的实现包括:根据待回答问题中的关键词搜集与待回答问题的答案相关的知识碎片;基于待回答问题的类型,对知识碎片进行词性标注分析,将包含符合待回答问题的类型的知识碎片作为候选答案;利用已训练的word2vec模型,计算关键词与候选答案中的知识碎片所包含的词语的相似度,找出满足相似度要求的词语作为目标候选答案;将目标候选答案中的词语反代入到待回答问题中得到若干个目标语句,并通过判断各目标语句的语义信息,对各目标语句进行排序,将排序最靠前的目标语句作为目标答案。通过本发明能够找到相似度较高的多个词语的答案,从而提高了系统的精确度。

    基于深度学习的答案抽取方法及系统

    公开(公告)号:CN107729468A

    公开(公告)日:2018-02-23

    申请号:CN201710948835.3

    申请日:2017-10-12

    Abstract: 本发明公开了一种基于深度学习的答案抽取方法及系统,其中,方法的实现包括:根据待回答问题中的关键词搜集与待回答问题的答案相关的知识碎片;基于待回答问题的类型,对知识碎片进行词性标注分析,将包含符合待回答问题的类型的知识碎片作为候选答案;利用已训练的word2vec模型,计算关键词与候选答案中的知识碎片所包含的词语的相似度,找出满足相似度要求的词语作为目标候选答案;将目标候选答案中的词语反代入到待回答问题中得到若干个目标语句,并通过判断各目标语句的语义信息,对各目标语句进行排序,将得分最高的目标语句作为目标答案。通过本发明能够找到相似度较高的多个词语的答案,从而提高了系统的精确度。

Patent Agency Ranking