一种基于深度学习的在线学习投入度识别方法及系统

    公开(公告)号:CN113688789A

    公开(公告)日:2021-11-23

    申请号:CN202111091047.X

    申请日:2021-09-17

    Abstract: 本发明设计了一种基于深度学习的在线学习投入度识别方法及系统,首先为了保证图像不受无关背景的影响,本发明通过YOLOv4进行学生人脸检测;其次针对VGG16网络参数量庞大、训练耗时等问题,提出了一种改进的VGG16模型,同时,在模型训练过程中,采用深度确定性信息瓶颈方法DIB弥补传统损失函数的不足,以获取较为紧致的特征表达,减少泛化误差,改善模型的通用性和稳定性,实现复杂在线学习场景下的学习投入度精准识别;最后通过与传统机器学习和其它深度学习等多种方法比较和分析,验证了本发明方法的有效性。

    一种基于深度学习的在线学习投入度识别方法及系统

    公开(公告)号:CN113688789B

    公开(公告)日:2023-11-10

    申请号:CN202111091047.X

    申请日:2021-09-17

    Abstract: 本发明设计了一种基于深度学习的在线学习投入度识别方法及系统,首先为了保证图像不受无关背景的影响,本发明通过YOLOv4进行学生人脸检测;其次针对VGG16网络参数量庞大、训练耗时等问题,提出了一种改进的VGG16模型,同时,在模型训练过程中,采用深度确定性信息瓶颈方法DIB弥补传统损失函数的不足,以获取较为紧致的特征表达,减少泛化误差,改善模型的通用性和稳定性,实现复杂在线学习场景下的学习投入度精准识别;最后通过与传统机器学习和其它深度学习等多种方法比较和分析,验证了本发明方法的有效性。

    一种基于多视觉线索融合的在线学习投入识别方法

    公开(公告)号:CN115424336A

    公开(公告)日:2022-12-02

    申请号:CN202210936778.8

    申请日:2022-08-05

    Abstract: 本发明公开了一种基于多视觉线索融合的在线学习投入识别方法,首先本发明面向大规模在线学习投入感知需求,从多视觉线索角度出发,挖掘在线学习投入的关联视觉线索,构建在线投入多维细粒度表征模型;其次,将时间序列的特征学习问题转化为基于图的特征学习问题,提出基于互信息正则化的图网络模型,同时,为本发明所采用的机器学习方法提供训练支持,构建了基于多视觉线索的学习投入感知数据库;最后构建融合多视觉线索的细粒度学习投入识别方法,并在此基础上设计基于投入图的粗粒度学习投入识别方法整合细粒度变长学习投入序列,最终实现多粒度在线学习投入识别,满足实际应用中多层次、多阶段的学习投入感知需求。

Patent Agency Ranking