知识认知结构分析方法、系统、计算机设备、介质、终端

    公开(公告)号:CN113591988B

    公开(公告)日:2023-08-29

    申请号:CN202110874755.4

    申请日:2021-07-30

    Abstract: 本发明属于个性化学习技术领域,公开了一种知识认知结构分析方法、系统、计算机设备、介质、终端,以学习者的学习交互序列为基础,得到联合先验特征;设计分层卷积神经网络对学习者学习状态进行空间分析,提取包含学习者个性化学习能力的空间特征;输出学习者在给定异构特征下对练习的反应情况,构建学习过程中影响学习者知识认知结构及表现的学习者时空融合特征;引入双向门循环单元,构建基于长时间依赖和融合时空特征的知识认知结构分析模型去动态诊断学习者的知识认知结构,预测学习者的学习表现。本发明有利于提高知识认知结构分析模型在预测学习者在特定资源下的学习表现方面的预测精度,对个性化教学的发展具有一定的借鉴意义。

    基于多任务框架的智能学习状态追踪方法、系统及应用

    公开(公告)号:CN114091657A

    公开(公告)日:2022-02-25

    申请号:CN202111386905.3

    申请日:2021-11-22

    Abstract: 本发明属于个性化学习技术领域,公开了一种基于多任务框架的智能学习状态追踪方法、系统及应用,采集学习者的外在学习行为特征、学习资源特征以及潜在能力特征,并进行预处理操作,获得包含先验信息的学习特征;然后构建多个堆叠的卷积神经网络对学习特征进行深度表示学习,控制学习者的遗忘情况,构建深层学习特征;再进行深浅特征融合,引入双向循环神经网络,构建基于长时序依赖的智能学习状态追踪模型;最后对学习者的学习状态进行量化及预测,并构造损失函数进行多任务训练。本发明有利于提高知识追踪模型在预测学习者学习状态方面的预测性能,而且拓展了知识追踪模型的预测领域和教育应用领域,推动了个性化教育、智慧教育的发展。

    知识认知结构分析方法、系统、计算机设备、介质、终端

    公开(公告)号:CN113591988A

    公开(公告)日:2021-11-02

    申请号:CN202110874755.4

    申请日:2021-07-30

    Abstract: 本发明属于个性化学习技术领域,公开了一种知识认知结构分析方法、系统、计算机设备、介质、终端,以学习者的学习交互序列为基础,得到联合先验特征;设计分层卷积神经网络对学习者学习状态进行空间分析,提取包含学习者个性化学习能力的空间特征;输出学习者在给定异构特征下对练习的反应情况,构建学习过程中影响学习者知识认知结构及表现的学习者时空融合特征;引入双向门循环单元,构建基于长时间依赖和融合时空特征的知识认知结构分析模型去动态诊断学习者的知识认知结构,预测学习者的学习表现。本发明有利于提高知识认知结构分析模型在预测学习者在特定资源下的学习表现方面的预测精度,对个性化教学的发展具有一定的借鉴意义。

    动态知识掌握建模方法、建模系统、存储介质及处理终端

    公开(公告)号:CN112529155A

    公开(公告)日:2021-03-19

    申请号:CN202011418200.0

    申请日:2020-12-07

    Abstract: 本发明属于个性化学习技术领域,公开了一种动态知识掌握建模方法、建模系统、存储介质及处理终端,构建学习过程中影响学习者知识掌握状态及表现的学习资源画像指标和学习者画像指标;从在线学习平台中采集包含相应的学习者行为数据以及数字学习资源特征的数据集;对构建的学习资源画像指标和学习者画像指标进行学习者信息融合量化处理,得到浅层学习特征;利用堆叠自编码器对得到的浅层学习特征进行深度表征及融合,构建深度学习者特征;构建基于记忆与遗忘因素结合的动态知识掌握模型。本发明有利于提高学习者表现的预测精度,也为动态知识掌握建模领域发展提供了新的思路,助力该领域发展。

Patent Agency Ranking