-
公开(公告)号:CN120012466A
公开(公告)日:2025-05-16
申请号:CN202311523390.6
申请日:2023-11-15
Applicant: 中国航发商用航空发动机有限责任公司 , 华东理工大学
IPC: G06F30/23 , G06F17/11 , G06F119/02 , G06F119/14
Abstract: 本发明涉及一种材料寿命预测方法、预测系统、计算机可读介质。其中,所述预测方法包括:获得待预测材料在纯低周疲劳、蠕变疲劳以及高低周复合的蠕变疲劳的载荷下各自对应的晶体塑性有限元模型的模拟结果、以及各自对应的至少一组实际试验结果;根据该模拟结果、以及该试验结果,确定纯低周疲劳、蠕变疲劳以及高低周复合的蠕变疲劳的载荷下的疲劳指示因子的临界值、蠕变指示因子的临界值以及和蠕变指示因子相关的参数;利用线性损伤累积准则建立基于晶体塑性的寿命预测方程,预测该待预测材料在循环载荷试验条件下的循环寿命。
-
公开(公告)号:CN118081744A
公开(公告)日:2024-05-28
申请号:CN202410231455.8
申请日:2024-02-29
Applicant: 华东理工大学 , 中国航发商用航空发动机有限责任公司
IPC: B25J9/16
Abstract: 本发明公开一种双机器人协作系统同步校准方法、系统及设备,涉及机器人领域;操作双机器人运动,采集第一位姿数据;基于恒等式组构建旋转分量闭环求解模型和平移向量闭环求解模型;将第一位姿数据输入至旋转闭环求解模型中,得到第二位姿数据的估计值;将第一位姿数据和第二位姿数据的估计值输入至平移向量闭环求解模型中,得到第三位姿数据的估计值;基于第二位姿数据的估计值、第三位姿数据的估计值和第一位姿数据构建目标函数;对所述目标函数进行迭代优化,直至达到预设迭代次数,得到第二位姿数据的精确值和第三位姿数据的精确值;基于第二位姿数据的精确值和第三位姿数据的精确值对双机器人进行校准。
-
公开(公告)号:CN117993204A
公开(公告)日:2024-05-07
申请号:CN202410190176.1
申请日:2024-02-21
Applicant: 华东理工大学 , 中国航发商用航空发动机有限责任公司
IPC: G06F30/20 , G16C60/00 , G06F119/04 , G06F119/08 , G06F119/14
Abstract: 本发明公开一种长时蠕变寿命预测方法、系统及电子设备,涉及寿命预测技术领域,所述方法包括:确定目标材料在多个目标温度下的抗拉强度和蠕变门槛应力;目标材料为待预测构件对应的材料;在多个目标温度下,对目标材料进行CT试样蠕变裂纹扩展速率试验,得到对应目标温度下的材料参数,并基于材料参数,建立裂纹长度变化与蠕变寿命的关系式;基于抗拉强度和蠕变门槛应力,建立裂纹长度变化与材料应力参数的关系式;基于裂纹长度变化与蠕变寿命的关系式和裂纹长度变化与材料应力参数的关系式,建立蠕变寿命预测方程;利用蠕变寿命预测方程对待预测构件进行蠕变寿命预测。本发明实现了对构件的长时蠕变寿命的精准快速预测。
-
公开(公告)号:CN112589694B
公开(公告)日:2024-03-29
申请号:CN202011460234.6
申请日:2020-12-11
Applicant: 华东理工大学 , 中国航发商用航空发动机有限责任公司 , 中国航发湖南动力机械研究所
Abstract: 本发明涉及一种纯水空化射流冲击强化喷嘴,包括:内部中空且沿轴向依次相连通的入射部、谐振部和喉管;所述入射部上设有连通入射部内腔和外界的入射口和至少一个气体射流孔,所述谐振部的内壁设有仿生结构,所述喉管上设有连通喉管内腔和外界的出口。本发明提供的纯水空化射流冲击强化喷嘴,通过在谐振部的内壁设置仿生结构,并将谐振部设置为颈缩型结构,可以大幅提升空化率;通过使喉管包括变直径的扩张腔,可以有效减小空化影响区域,从而使空化效果更好。
-
公开(公告)号:CN112045677B
公开(公告)日:2024-03-29
申请号:CN202010796539.8
申请日:2020-08-10
Applicant: 华东理工大学 , 中国航发商用航空发动机有限责任公司
Abstract: 本发明涉及一种航空发动机涡轮盘螺栓孔智能强化系统及其控制方法,航空发动机涡轮盘螺栓孔智能强化系统包括:机器人,其上固定有孔强化装置并带动该孔强化装置移动,孔强化装置连接有力传感器,孔强化装置上设有工业相机;数控转台,用于固定待加工的涡轮盘,其上设置有固定机构;控制系统,分别与机器人、力传感器、孔强化装置和数控转台通信连接;上位机,分别与控制系统及工业相机通信连接。本发明实施例提供的航空发动机涡轮盘螺栓孔智能强化系统及其控制方法,采用机器人夹持孔强化装置,配合数控转台、力传感器和工业相机,通过工业相机引导机器人运动,根据力传感器监测的受力进行柔性加工控制,实现航空发动机涡轮盘螺栓孔智能化加工。
-
公开(公告)号:CN114139317A
公开(公告)日:2022-03-04
申请号:CN202111499110.3
申请日:2021-12-09
Applicant: 华东理工大学 , 中国航发商用航空发动机有限责任公司 , 中国航发湖南动力机械研究所
IPC: G06F30/17 , G06F30/23 , G06F30/28 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明涉及一种航空发动机叶片水射流强化工艺的数字孪生建模方法,包括以下步骤:S1:获取航空发动机叶片水射流强化设备的基础数据、工况及工艺参数;S2:建立表面完整性有限元计算模型;S3:监测水射流强化实体设备的工况及工艺参数并检测水射流的强化效果;S4:将监测到的工况及工艺参数输入叶片表面完整性有限元计算模型中,得到强化效果;S5:修正表面完整性有限元计算模型,最终形成完整的叶片水射流强化工艺的数字孪生模型。本发明的航空发动机叶片水射流强化设备的数字孪生建模方法,将数字孪生技术应用到叶片水射流强化设备上,实现水射流强化过程可视化、实时监测、高效检测、有效预测。
-
公开(公告)号:CN112626322A
公开(公告)日:2021-04-09
申请号:CN202011460249.2
申请日:2020-12-11
Applicant: 华东理工大学 , 中国航发商用航空发动机有限责任公司 , 中国航发湖南动力机械研究所
Abstract: 本发明涉及一种射流强化装置及方法,射流装置包括介质存储器、混合腔、喷嘴、升降平台和控制装置;介质存储器内设有多个分隔的存储腔且至少一个存储腔中设有石墨烯,存储腔内设有第一搅拌器,存储腔通过射流通道分别与混合腔相连通;混合腔分别与介质存储器及喷嘴相连,其腔内设有第二搅拌器;所述喷嘴具有中空的内腔并与混合腔相连通,且该喷嘴位于所述升降平台的上方;控制装置分别控制第一搅拌器、第二搅拌器和升降平台的操作。本发明的射流强化装置及方法,可以实现任意液体与石墨烯的混合射流强化,从而使强化后的表面质量和疲劳强度更好;通过控制装置可实现强化的自动控制,提高了强化效率,且操作简单,便于调整与维护。
-
公开(公告)号:CN109468445B
公开(公告)日:2020-11-10
申请号:CN201811033315.0
申请日:2018-09-05
Applicant: 华东理工大学 , 中国航发商用航空发动机有限责任公司
IPC: C21D7/04
Abstract: 本发明提供一种基于微凸点与涂层复合旋转挤压强化装置,其包括芯棒以及可滑动地套设于芯棒上的套筒,所述芯棒包括一锥形圆柱体,芯棒的外表面涂有一层第一涂层,套筒具有外壁,该外壁上开设有一条螺旋通槽,所述侧壁的外表面上具有排布紧密且规则的球形凸起,球形凸起的表面镀有一层第二涂层。本发明还提供了一种基于微凸点与涂层复合旋转挤压强化工艺。本发明的基于微凸点与涂层复合旋转挤压强化装置采用包括一锥形圆柱体的芯棒和与其匹配的锥形通孔,有利于套筒与芯棒的对中,同时使得芯棒沿着孔的径向挤压时,应力分布更均匀;装置的套筒表面开有螺旋通槽,一方面挤压时,使应力分布更加均匀,另一方面有利于旋转工艺的进行。
-
公开(公告)号:CN108279640A
公开(公告)日:2018-07-13
申请号:CN201711399936.6
申请日:2017-12-22
Applicant: 中国航发商用航空发动机有限责任公司 , 华东理工大学
IPC: G05B19/404
Abstract: 本发明涉及一种复杂曲面表面加工轨迹的误差计算方法,包含多个步骤,每个步骤对机床上的各个坐标轴上的误差进行分别计算,给出了计算的具体公式,从数学的角度对各个误差进行严格规范,以保证加工的严谨性与正确性。
-
公开(公告)号:CN106363344A
公开(公告)日:2017-02-01
申请号:CN201610821586.7
申请日:2016-09-13
Applicant: 华东理工大学 , 中航商用航空发动机有限责任公司
IPC: B23P9/04
CPC classification number: B23P9/04
Abstract: 本发明提供一种适应于复杂表面的超声滚压加工装置,包括:一壳体组件、一液压组件、以及一超声组件,所述超声组件固定于所述壳体组件内,所述超声组件包括:一换能器,所述换能器连接有一超声发生器;一变幅杆,所述变幅杆的一第一端连接于所述换能器的一第一端,所述变幅杆的径向切面的两边缘曲线为贝塞尔曲线;和一工具头,所述工具头可拆卸地连接于所述变幅杆的一第二端。本发明的适应于复杂表面的超声滚压加工装置,能够减轻甚至防止由于环境改变或自身故障的原因所造成的运动失效,具有效率高、能量损失少、体积小、使用寿命长、散热性好、灵活性高、通用性好和重量轻的优点。
-
-
-
-
-
-
-
-
-