-
公开(公告)号:CN114611659A
公开(公告)日:2022-06-10
申请号:CN202210083764.6
申请日:2022-01-24
Applicant: 北京邮电大学 , 北京物联智通科技有限公司
Abstract: 本申请提供一种基于STN的高效安全联邦学习方法及相关设备,其中,所述方法包括:首先,利用空间转换网络对输入的初始二维特征矩阵进行仿射变换,再将仿射变换后的二维特征矩阵输入到联邦学习模型中的卷积神经网络中,得到预测分类结果。利用空间转换网络对输入的初始二维特征矩阵进行仿射变换,等于对不同的二维特征矩阵数据集做相似处理,解决了数据集不一致的问题,从而减小了联邦学习模型中的本地模型的数据集的大小;同时也消除了后续步骤中二维特征矩阵进行多次矩阵初等变换对卷积神经网络特征提取的影响,提升了联邦学习模型分类预测的准确率。