-
公开(公告)号:CN113591999B
公开(公告)日:2023-08-01
申请号:CN202110887349.1
申请日:2021-08-03
Applicant: 北京邮电大学
IPC: G06F18/214 , G06F21/62 , G06N20/00
Abstract: 本申请实施例提供了一种端边云联邦学习模型训练系统及方法,应用于模型训练的技术领域,可以根据获取样本数据的成本、预设的不同准确率对应的联邦学习成本和预设的不同模型准确率对应的模型损失,计算待训练的联邦学习模型的总训练成本最低时的模型准确率,得到目标准确率,并根据样本数据对待训练的联邦学习模型进行训练,得到满足目标准确率的联邦学习模型,从而不但可以保证联邦学习模型的准确率,还可以降低联邦学习模型的训练成本。
-
公开(公告)号:CN113591999A
公开(公告)日:2021-11-02
申请号:CN202110887349.1
申请日:2021-08-03
Applicant: 北京邮电大学
Abstract: 本申请实施例提供了一种端边云联邦学习模型训练系统及方法,应用于模型训练的技术领域,可以根据获取样本数据的成本、预设的不同准确率对应的联邦学习成本和预设的不同模型准确率对应的模型损失,计算待训练的联邦学习模型的总训练成本最低时的模型准确率,得到目标准确率,并根据样本数据对待训练的联邦学习模型进行训练,得到满足目标准确率的联邦学习模型,从而不但可以保证联邦学习模型的准确率,还可以降低联邦学习模型的训练成本。
-