小样本图像识别方法、装置、设备及存储介质

    公开(公告)号:CN115424053A

    公开(公告)日:2022-12-02

    申请号:CN202210879098.7

    申请日:2022-07-25

    Abstract: 本申请公开了一种小样本图像识别方法、装置、设备及存储介质,所述方法包括:获取待识别的图像,根据所述待识别的图像构建图像插曲,所述图像插曲中包含支持集和查询集;将所述图像插曲输入预训练的图像识别模型,所述图像识别模型为基于困难插曲训练的小样本图像识别模型;根据所述图像识别模型计算所述查询集中的图像与支持集中的图像类别的相似度,根据所述相似度确定待识别的查询集中的图像类别。本申请实施例提供的图像识别方法,能够利用较少的图像样本进行模型训练和图像识别,且将困难插曲融入小样本图像识别模型训练过程中,使小样本图像识别模型能够更加高效快速的进行训练,且训练好的模型稳定性更高,图像识别的准确率也更高。

    小样本图像识别方法、装置、设备及存储介质

    公开(公告)号:CN115424053B

    公开(公告)日:2023-05-02

    申请号:CN202210879098.7

    申请日:2022-07-25

    Abstract: 本申请公开了一种小样本图像识别方法、装置、设备及存储介质,所述方法包括:获取待识别的图像,根据所述待识别的图像构建图像插曲,所述图像插曲中包含支持集和查询集;将所述图像插曲输入预训练的图像识别模型,所述图像识别模型为基于困难插曲训练的小样本图像识别模型;根据所述图像识别模型计算所述查询集中的图像与支持集中的图像类别的相似度,根据所述相似度确定待识别的查询集中的图像类别。本申请实施例提供的图像识别方法,能够利用较少的图像样本进行模型训练和图像识别,且将困难插曲融入小样本图像识别模型训练过程中,使小样本图像识别模型能够更加高效快速的进行训练,且训练好的模型稳定性更高,图像识别的准确率也更高。

    一种小样本图像检测方法、系统、介质及设备

    公开(公告)号:CN117237697B

    公开(公告)日:2024-05-17

    申请号:CN202310960507.0

    申请日:2023-08-01

    Abstract: 本公开涉及一种小样本图像检测方法、系统、介质及设备,方法包括:向图像检测模型中输入样本数据并对所述样本数据进行数据增强得到增强后的增强数据;从所述增强数据中利用卷积神经网络提取特征向量;生成用于分类器检测和定位目标的第一区域候选框,对所述第一区域候选框进行降采样得到第二区域候选框并根据所述第二区域候选框的坐标提取出所述特征向量中的特征;利用多层全连接网络对传入的特征进行分类和回归,以得到预测目标的位置和标签;计算图像检测模型的损失并更新图像检测模型的参数。不同于传统的基于候选框的预测方法:单个候选框预测单个实例。针对不同程度的遮挡问题进行算法的优化:在生成候选框之后,为每个候选框预测一组实例。

    一种模型训练、图像识别方法、装置、设备及存储介质

    公开(公告)号:CN116091867A

    公开(公告)日:2023-05-09

    申请号:CN202310063908.6

    申请日:2023-01-12

    Abstract: 本申请提供了一种模型训练、图像识别方法、装置、设备及存储介质,所述方法包括:在源域数据集中随机获取多个图像插曲;构建任务感知的自适应学习网络模型;将所述图像插曲输入所述自适应学习网络模型,得到所述图像插曲中的支持样本与查询样本的特征图;根据所述支持样本与所述查询样本的特征图确定分类损失,根据所述图像插曲与目标域数据集的域偏移确定自适应损失,根据所述分类损失与所述自适应损失确定整体损失;根据所述整体损失调整所述自适应学习网络模型,直至所述整体损失收敛为止。本申请中,通过将域偏移引入损失函数,从而使得训练后的模型可以兼顾具备不同域偏移的目标数据集,达到更准确的图像识别效果。

    一种小样本图像检测方法、系统、介质及设备

    公开(公告)号:CN117237697A

    公开(公告)日:2023-12-15

    申请号:CN202310960507.0

    申请日:2023-08-01

    Abstract: 本公开涉及一种小样本图像检测方法、系统、介质及设备,方法包括:向图像检测模型中输入样本数据并对所述样本数据进行数据增强得到增强后的增强数据;从所述增强数据中利用卷积神经网络提取特征向量;生成用于分类器检测和定位目标的第一区域候选框,对所述第一区域候选框进行降采样得到第二区域候选框并根据所述第二区域候选框的坐标提取出所述特征向量中的特征;利用多层全连接网络对传入的特征进行分类和回归,以得到预测目标的位置和标签;计算图像检测模型的损失并更新图像检测模型的参数。不同于传统的基于候选框的预测方法:单个候选框预测单个实例。针对不同程度的遮挡问题进行算法的优化:在生成候选框之后,为每个候选框预测一组实例。

    一种模型训练、图像识别方法、装置、设备及存储介质

    公开(公告)号:CN116091867B

    公开(公告)日:2023-09-29

    申请号:CN202310063908.6

    申请日:2023-01-12

    Abstract: 本申请提供了一种模型训练、图像识别方法、装置、设备及存储介质,所述方法包括:在源域数据集中随机获取多个图像插曲;构建任务感知的自适应学习网络模型;将所述图像插曲输入所述自适应学习网络模型,得到所述图像插曲中的支持样本与查询样本的特征图;根据所述支持样本与所述查询样本的特征图确定分类损失,根据所述图像插曲与目标域数据集的域偏移确定自适应损失,根据所述分类损失与所述自适应损失确定整体损失;根据所述整体损失调整所述自适应学习网络模型,直至所述整体损失收敛为止。本申请中,通过将域偏移引入损失函数,从而使得训练后的模型可以兼顾具备不同域偏移的目标数据集,达到更准确的图像识别效果。

Patent Agency Ranking