-
公开(公告)号:CN104598984B
公开(公告)日:2018-03-02
申请号:CN201410743621.9
申请日:2014-12-08
Applicant: 北京邮电大学
Abstract: 本发明涉及一种基于模糊神经网络的故障预测方法,能够解决现有技术中无法进行在线故障预测的问题。所述基于模糊神经网络的故障预测方法包括:根据故障预测时序建立算法模型;读取表征网络运行状态的τ个时隙的τ个n维指标数据;向输入层神经元节点中输入τ个指标数据;预处理层神经元节点利用第一映射函数将每一个n维指标数据中的每一类别的指标数据映射成集合S中的一种;根据预先确定的预处理层神经元节点与规则层神经元节点间的关联权重确定出指标与故障间的关联规则;根据指标与故障间的关联规则确定出τ个指标数据处于故障倾向模式和无故障模式的概率;将概率中较大的概率所对应的模式确定为预测结果。本发明适用于需要进行故障预测的场合。
-
公开(公告)号:CN104598984A
公开(公告)日:2015-05-06
申请号:CN201410743621.9
申请日:2014-12-08
Applicant: 北京邮电大学
CPC classification number: G06Q10/04 , G06N3/0436
Abstract: 本发明涉及一种基于模糊神经网络的故障预测方法,能够解决现有技术中无法进行在线故障预测的问题。所述基于模糊神经网络的故障预测方法包括:根据故障预测时序建立算法模型;读取表征网络运行状态的τ个时隙的τ个n维指标数据;向输入层神经元节点中输入τ个指标数据;预处理层神经元节点利用第一映射函数将每一个n维指标数据中的每一类别的指标数据映射成集合S中的一种;根据预先确定的预处理层神经元节点与规则层神经元节点间的关联权重确定出指标与故障间的关联规则;根据指标与故障间的关联规则确定出τ个指标数据处于故障倾向模式和无故障模式的概率;将概率中较大的概率所对应的模式确定为预测结果。本发明适用于需要进行故障预测的场合。
-