基于深度网络的图标检测方法

    公开(公告)号:CN109800698A

    公开(公告)日:2019-05-24

    申请号:CN201910026888.9

    申请日:2019-01-11

    Abstract: 本公开涉及一种基于深度学习的图标检测方法,包括模型训练阶段和模型测试阶段,其中,所述模型训练阶段包括以下步骤:步骤1、准备画面中不含待检测图标的视频帧集合;步骤2、准备仅含有待检测图标的图标图像,其包含颜色通道和Alpha通道数据、以及图标分类信息;步骤3、将所述图标图像与视频帧集合中的各个帧进行随机的图像叠加,形成含有待检测图标的叠加图像,作为训练数据集,训练形成图标检测模型;其中,所述模型测试阶段包括以下步骤:步骤4、将待检测图像输入所述图标检测模型,所述图标检测模型输出检测结果,所述检测结果包括所述测试图像是否含有图标、所含图标的分类信息和位置信息。

    爆炸电路板残片图像自动比对识别方法

    公开(公告)号:CN106780440A

    公开(公告)日:2017-05-31

    申请号:CN201611075728.6

    申请日:2016-11-29

    CPC classification number: G06T7/0004 G06T2207/30141

    Abstract: 本发明公开了一种爆炸电路板残片图像自动比对识别方法,属于模式识别和图像处理技术领域。所述方法首先将残片图像基于概率图模型的图像分割算法进行对象分割,再采用基于概率抽样的颜色模型进行元器件的对象精定位,然后提取特征点并过滤,将过滤后的特征点与检索库中的电路板特征点进行比对识别,确定残片所属的源电路板。本发明首次提出并实现了根据爆炸电路板残片图像自动识别印刷电路板同型号原板的方法。所述比对识别方法能够准确地分割出电路板中的元器件及字符区域,抑制噪声干扰,比对时同时考虑特征点描述与空间几何关系的相似性,该方法在电路板残片图像自动识别中TOP1准确率高于99%。

    一种多模态行人再辨识技术

    公开(公告)号:CN103942563A

    公开(公告)日:2014-07-23

    申请号:CN201410125981.2

    申请日:2014-03-31

    Abstract: 本申请公开了一种多模态行人再辨识技术,包括以下步骤:步骤1、从第一摄像机和第二摄像机各自拍摄的第一图像和第二图像中分别截取包含目标的前景图像,其中,第二图像对应于已知目标;步骤2、从所截取的前景图像中分别提取颜色特征和纹理特征,并将颜色特征和纹理特征级联,形成图像特征;步骤3、将所述图像特征输入到Hash投影模型,计算第一图像和第二图像中的目标的相似度;步骤4、如果所计算的相似度大于预定阈值,则将第一图像的目标判定为第二图像所对应的已知目标。

    一种基于类Haar特征和支持向量机的车牌字符识别方法

    公开(公告)号:CN102163287A

    公开(公告)日:2011-08-24

    申请号:CN201110074467.7

    申请日:2011-03-28

    Abstract: 本发明提出了一种基于类Haar特征向量和支持向量机(SVM)的车牌字符识别新方法,属于模式识别和智能交通领域,涉及字符图像特征提取和字符分类器训练。车牌字符识别方法是车牌识别的核心技术,其中需要解决的两个关键问题是字符特征提取和字符分类器设计。本发明选用适合字符笔画宽度的类Haar特征结构描述字符笔画,提取字符图像块的类Haar特征结构隶属度构成字符识别的特征向量,用以训练泛化性能好的SVM字符分类器。字符的几何结构是识别字符的关键特征,将笔画几何结构转换成统计量值来描述,是本发明的创新所在。所提车牌字符图像识别方法抗干扰性好,用于交通视频中的车牌字符识别,具有实时性好、识别精度高之特点。

    水切伦科夫探测器阵列簇射事例方向重建及噪声去除方法

    公开(公告)号:CN109492646B

    公开(公告)日:2022-04-15

    申请号:CN201811245476.6

    申请日:2018-10-24

    Abstract: 本公开涉及一种水切伦科夫探测器阵列簇射事例方向重建及噪声去除方法和系统,包括以下步骤:步骤1、获得水切伦科夫探测器阵列簇射事例,其中单个簇射事例形成由粒子构成的三维空间点云,其中,所述粒子包括真实信号粒子和噪声粒子;步骤2、将所述三维空间点云划分成多个体素,并获取各个体素中的簇射粒子数目、以及各个体素中能量值最大粒子的能量;步骤3、根据各个体素中的簇射粒子数目、以及各个体素中能量值最大粒子的能量,得到各个体素中存在真实信号粒子的置信度;步骤4、筛选出所述置信度高于第一阈值的体素中的粒子;步骤5、对筛选出的粒子进行拟合形成簇射前锋面,将簇射事例的入射方向确定为簇射前锋面的法线方向。

    基于特征点及其结构关系的电路板残片图像识别方法

    公开(公告)号:CN110148133A

    公开(公告)日:2019-08-20

    申请号:CN201910534181.9

    申请日:2019-06-20

    Abstract: 本公开涉及基于特征点及其结构关系的电路板残片图像识别方法,其中在样本库中保存有样本图像及其特征点和特征描述,该方法包括步骤:1、提取残片图像的特征点;2、计算特征点的SIFT描述;3、分别计算每个特征点的SIFT描述与每个样本图像的每个特征点的SIFT描述的第一欧式距离;4、对第一欧式距离由小到大排序,选择特征点集中第一欧式距离排序靠前的多个特征点,作为的该特征点的候选匹配点;5、计算候选匹配点与该特征点的形状上下文描述之间的第二欧氏距离,保留第二欧式距离不大于预定阈值的候选匹配点,作为该特征点的匹配点集;6、在样本图像中寻找与残片图像的第一星型结构匹配的第二星型结构;7、根据星型结构之间的相似性,获得样本图像与残片图像的匹配度。

    爆炸装置电路板残片识别方法

    公开(公告)号:CN108961240A

    公开(公告)日:2018-12-07

    申请号:CN201810710880.X

    申请日:2018-07-03

    CPC classification number: G06T7/0004 G06T7/33 G06T2207/10024 G06T2207/30141

    Abstract: 本公开涉及爆炸装置电路板残片识别方法,其中在样本库中保存有样本图像及其特征点和特征描述,该方法包括步骤:1、提取残片图像的特征点;2、计算特征点的SIFT描述;3、分别计算每个特征点的SIFT描述与每个样本图像的每个特征点的SIFT描述的第一欧式距离;4、对第一欧式距离由小到大排序,选择特征点集中第一欧式距离排序靠前的多个特征点,作为的该特征点的候选匹配点;5、计算候选匹配点与该特征点的形状上下文描述之间的第二欧氏距离,保留第二欧式距离不大于预定阈值的候选匹配点,作为该特征点的匹配点集;6、在样本图像中寻找与残片图像的第一星型结构匹配的第二星型结构;7、根据星型结构之间的相似性,获得样本图像与残片图像的匹配度。

    基于模板特征点及其拓扑结构的多币种面值识别方法

    公开(公告)号:CN104464079A

    公开(公告)日:2015-03-25

    申请号:CN201410837446.X

    申请日:2014-12-29

    Abstract: 本申请公开了基于模板特征点及其拓扑结构的多币种面值识别方法,包括:1、提取待识别纸币图像的特征点,记录特征点的位置及其特征描述;2、将待识别纸币图像的特征点与各个模板的基准点分别进行第一比对匹配,选取与一个或多个模板的基准点之间的匹配结果满足第一匹配条件的特征点,作为待识别纸币图像的基准点;3、以待识别纸币图像的基准点作为基准,生成其它特征点的拓扑结构信息;4、将待识别纸币图像的其它特征点的特征描述及其拓扑结构信息与一个或多个模板的特征点的特征描述及其拓扑结构信息进行第二比对匹配;5、选取与待识别纸币图像的比对匹配结果满足判别条件的模板所代表的币种及面值,作为待识别纸币图像的面值识别结果。

    一种基于监控视频的实时摔倒事件检测方法

    公开(公告)号:CN103955699A

    公开(公告)日:2014-07-30

    申请号:CN201410125985.0

    申请日:2014-03-31

    Abstract: 本申请公开了一种基于监控视频的实时摔倒事件检测方法,在检测场景中安装有朝向同一目标区域、拍摄角度不同的多个摄像机,多个摄像机连续拍摄目标区域,包括以下步骤:多个摄像机同时拍摄目标区域的一段视频;从多个摄像机各自拍摄的同一时段的多个视频中,分别提取出每一帧画面的代表目标的前景图像;提取同一时刻同一目标的前景图像在由多个摄像机拍摄的画面中的各自的形状和位置特征,并使用RVM分类器,确定每一帧画面对应的时刻的目标姿态类别;将所得到的每一帧画面的目标姿态类别作为目标姿态值序列输入到HMM评估器,得到目标姿态类别变化的后验概率,目标姿态类别变化代表目标摔倒事件发生;如果后验概率大于预定阈值,则确定摔倒发生。

    基于深度学习的图标检测方法、图标检测系统和存储介质

    公开(公告)号:CN109800698B

    公开(公告)日:2021-02-19

    申请号:CN201910026888.9

    申请日:2019-01-11

    Abstract: 本公开涉及一种基于深度学习的图标检测方法,包括模型训练阶段和模型测试阶段,其中,所述模型训练阶段包括以下步骤:步骤1、准备画面中不含待检测图标的视频帧集合;步骤2、准备仅含有待检测图标的图标图像,其包含颜色通道和Alpha通道数据、以及图标分类信息;步骤3、将所述图标图像与视频帧集合中的各个帧进行随机的图像叠加,形成含有待检测图标的叠加图像,作为训练数据集,训练形成图标检测模型;其中,所述模型测试阶段包括以下步骤:步骤4、将待检测图像输入所述图标检测模型,所述图标检测模型输出检测结果,所述检测结果包括所述测试图像是否含有图标、所含图标的分类信息和位置信息。

Patent Agency Ranking