-
公开(公告)号:CN110751209B
公开(公告)日:2022-12-13
申请号:CN201910996243.8
申请日:2019-10-18
Applicant: 北京邮电大学
IPC: G06V10/764 , G06V10/80 , G06V10/74 , G06V10/82 , G06N3/08
Abstract: 本发明提出了一种融合深度图像分类和检索的智能台风定强方法,用以从有限的不均衡的卫星遥感数据中自动获取台风强度特征,并结合特征分类和特征检索双估计方法进行台风定强,解决台风强度预测误差大且泛化能力、可解释性差的问题。所述的台风定强方法包括:从卫星遥感数据中获取台风图像;训练深度卷积网络CNN模型、提取特征、构建特征检索库;使用训练好CNN模型对待测台风图像进行强度分类;采用向量距离检索模型对待测台风图像进行相似度检索;对分类和检索结果进行排序策略融合,得到最终的台风强度。
-
公开(公告)号:CN110751209A
公开(公告)日:2020-02-04
申请号:CN201910996243.8
申请日:2019-10-18
Applicant: 北京邮电大学
IPC: G06K9/62
Abstract: 本发明提出了一种融合深度图像分类和检索的智能台风定强方法,用以从有限的不均衡的卫星遥感数据中自动获取台风强度特征,并结合特征分类和特征检索双估计方法进行台风定强,解决台风强度预测误差大且泛化能力、可解释性差的问题。所述的台风定强方法包括:从卫星遥感数据中获取台风图像;训练深度卷积网络CNN模型、提取特征、构建特征检索库;使用训练好CNN模型对待测台风图像进行强度分类;采用向量距离检索模型对待测台风图像进行相似度检索;对分类和检索结果进行排序策略融合,得到最终的台风强度。
-