-
公开(公告)号:CN119701377A
公开(公告)日:2025-03-28
申请号:CN202411939576.4
申请日:2024-12-26
Applicant: 北京邮电大学
IPC: A63F13/822 , A63B24/00 , G06N3/092 , A63F13/77
Abstract: 本公开提供了一种智能体训练方法及装置、电子设备、存储介质,属于智能体训练技术领域,该方法包括:确定主智能体的第一策略模型和陪练智能体的第二策略模型,第一策略模型为主智能体历史版本池中的模型,第二策略模型为陪练智能体历史版本池中的模型;基于第一策略模型和第二策略模型的交互数据对第一策略模型进行更新得到第三策略模型,基于第一策略模型和第二策略模型的交互数据对第二策略模型进行更新得到第四策略模型;将第三策略模型加入主智能体历史版本池中,将第四策略模型加入到陪练智能体历史版本池中。本公开提供的智能体训练方法及装置、电子设备、存储介质能够满足在非对称任务中策略多变、环境复杂的实际需求。
-
公开(公告)号:CN118097283A
公开(公告)日:2024-05-28
申请号:CN202410274125.7
申请日:2024-03-11
Applicant: 北京邮电大学
IPC: G06V10/764 , G06V10/82 , G06V10/776 , G06N3/0499 , G06N3/084
Abstract: 本公开提供了一种图像分类方法及装置、电子设备、可读存储介质,属于机器学习技术领域,该方法包括:基于第一分类类别对目标分类器的权重进行更新。确定第一训练集中样本类别和第二训练集中样本类别的数量比例,基于数量比例计算目标分类器对应的图像分类模型的损失函数值。第一训练集为第一分类类别对应的训练集,第二训练集属于图像分类模型的历史训练集,为第二分类类别对应的训练集。第二分类类别不同于第一分类类别。基于损失函数值、第一训练集以及第二训练集对图像分类模型的骨干网络进行参数更新直至图像分类模型收敛。基于收敛后的图像分类模型进行图像分类。本公开提供的图像分类方法能够减轻数据不平衡问题对图像分类模型训练性能的影响,提高模型的泛化能力。
-
公开(公告)号:CN116563635A
公开(公告)日:2023-08-08
申请号:CN202310550550.X
申请日:2023-05-16
Applicant: 北京邮电大学
IPC: G06V10/764 , G06V10/82 , G06V10/77 , G06N3/0464 , G06N3/0895 , G06N3/096 , G06N3/048 , G06F21/71
Abstract: 本发明涉及图像处理技术领域,提出了基于类别属性建模的图像分类系统,包括图像预处理模块,用于对原始图像进行预处理,得到原始图像的多个数据增广变换图像;骨干网络,用于提取第一数据增广变换图像的特征向量xs;持续学习的知识蒸馏分支,用于通过最小化蒸馏损失函数,使特征向量xs与特征向量xt的概率分布误差在第一设定范围内;自监督学习分支,用于通过最小化对比损失函数,使特征向量xs和特征向量xc的误差在第二设定范围内;属性注意力模块,用于使用属性标记与交叉注意力机制计算特征向量xs的属性编码e;分类模块,用于计算每个类别的分类分数。通过上述技术方案,解决了现有技术中基于回放的持续学习方法内存消耗大的问题。
-
-