-
公开(公告)号:CN116959100B
公开(公告)日:2024-10-11
申请号:CN202310732026.4
申请日:2023-06-20
Applicant: 北京邮电大学
IPC: G06V40/20 , G06V20/40 , G06V10/774 , G06V10/82
Abstract: 本发明提供了一种基于频域增强的压缩视频人体行为识别方法。该方法包括:构建频域增强FE模块,所述FE模块包括时间‑通道双头注意力TCTHA模块和频段重叠的分组卷积FOGC模块;将所述FE模块插入到骨干网络为ResNet‑50的网络中,得到频域增强的压缩视频人体行为识别FENet网络,对所述FENet网络进行训练;将待识别的压缩视频数据输入到训练好的FENet网络中,FENet网络输出所述待识别的压缩视频的人体行为识别结果。本发明方法解决了频域学习的低频纹理和边缘线索丢失问题、时空建模不足的问题,与其他基于频域数据的方法相比,达到了更高的识别准确率,与其他基于压缩域数据的方法和基于RGB数据方法相比,也达到了具有竞争力的准确率,同时具有较高的效率。
-
公开(公告)号:CN116959100A
公开(公告)日:2023-10-27
申请号:CN202310732026.4
申请日:2023-06-20
Applicant: 北京邮电大学
IPC: G06V40/20 , G06V20/40 , G06V10/774 , G06V10/82
Abstract: 本发明提供了一种基于频域增强的压缩视频人体行为识别方法。该方法包括:构建频域增强FE模块,所述FE模块包括时间‑通道双头注意力TCTHA模块和频段重叠的分组卷积FOGC模块;将所述FE模块插入到骨干网络为ResNet‑50的网络中,得到频域增强的压缩视频人体行为识别FENet网络,对所述FENet网络进行训练;将待识别的压缩视频数据输入到训练好的FENet网络中,FENet网络输出所述待识别的压缩视频的人体行为识别结果。本发明方法解决了频域学习的低频纹理和边缘线索丢失问题、时空建模不足的问题,与其他基于频域数据的方法相比,达到了更高的识别准确率,与其他基于压缩域数据的方法和基于RGB数据方法相比,也达到了具有竞争力的准确率,同时具有较高的效率。
-