-
公开(公告)号:CN116823908A
公开(公告)日:2023-09-29
申请号:CN202310758435.1
申请日:2023-06-26
Applicant: 北京邮电大学
IPC: G06T7/50 , G06T9/00 , G06V10/52 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明提供了一种基于多尺度特征相关性增强的单目图像深度估计方法。该方法包括:利用多模态RGB‑Depth融合模块对输入的RGB图像进行数据增强的预处理操作;使用多尺度深度编码模块提取数据增强后的多尺度特征图;在解码阶段使用RFF模块获取细粒度特征图,使用MFCE模块增强多尺度特征中的不同尺度间特征的相关性,通过结合RFF模块和MFCE模块融合和优化特征图,并获得逐像素深度图;通过深度表征目标函数优化整个单目深度估计网络模型的训练,确保泛化能力。本发明方法增强全局特征与局部特征之间的相关性,学习有效的外观结构信息,解决了由纹理偏差导致对外观结构错误估计的问题,重建了清晰稠密的单目深度图。
-
公开(公告)号:CN116823908B
公开(公告)日:2024-09-03
申请号:CN202310758435.1
申请日:2023-06-26
Applicant: 北京邮电大学
IPC: G06T7/50 , G06T9/00 , G06V10/52 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明提供了一种基于多尺度特征相关性增强的单目图像深度估计方法。该方法包括:利用多模态RGB‑Depth融合模块对输入的RGB图像进行数据增强的预处理操作;使用多尺度深度编码模块提取数据增强后的多尺度特征图;在解码阶段使用RFF模块获取细粒度特征图,使用MFCE模块增强多尺度特征中的不同尺度间特征的相关性,通过结合RFF模块和MFCE模块融合和优化特征图,并获得逐像素深度图;通过深度表征目标函数优化整个单目深度估计网络模型的训练,确保泛化能力。本发明方法增强全局特征与局部特征之间的相关性,学习有效的外观结构信息,解决了由纹理偏差导致对外观结构错误估计的问题,重建了清晰稠密的单目深度图。
-