数据驱动的集合多时间尺度规律的气象预报方法和系统

    公开(公告)号:CN118674098A

    公开(公告)日:2024-09-20

    申请号:CN202410693252.0

    申请日:2024-05-31

    Abstract: 本发明提供数据驱动的集合多时间尺度规律的气象预报方法和系统,包括:数据收集模块、数据预处理模块、气象变化规律选择模块、训练数据准备模块、建模模块、集合预报权重学习模块以及预报模块;依靠神经网络模型强大的学习能力,从多时间尺度建模更丰富的大气系统的变化规律,弥补单一气象规律的建模误差,通过一个权重可学习的元模型将所有模型的预报结果进行集成,基于数据驱动的方式为每个预报时刻自动地选择最优的集合方式;对比基于单一气象规律的预报系统,预报结果的准确率和稳定性均有提升,且随着预报时效的增长,提升愈发明显。

    基于图神经网络多模态气象数据融合的气象要素预报方法

    公开(公告)号:CN116720156A

    公开(公告)日:2023-09-08

    申请号:CN202310751074.8

    申请日:2023-06-25

    Abstract: 本发明公开了一种基于图神经网络多模态气象数据融合的气象要素预报方法,属于数值天气预报技术领域。本发明利用多模态气象数据(静止气象卫星数据和地面气象站观测数据)的互补优势(自上而下的遥感观测+自下而上的地面观测)完成气象预报任务,弥补单一来源数据的不足;通过构建卫星‑观测站多模态数据融合框架进行多模态特征融合,并提出基于多图融合的图卷积神经网络框架,从多角度挖掘站点地理位置之间的关系、不同气象要素之间的内在联系,构建多种静态图和动态图,并通过自适应学习融合时序多图特征,实现全天候、高精度的地面观测站气象要素预报。

Patent Agency Ranking