一种基于神经网络的中文字符串图片OCR识别方法

    公开(公告)号:CN110321830A

    公开(公告)日:2019-10-11

    申请号:CN201910576921.5

    申请日:2019-06-28

    Abstract: 本发明公开了一种基于神经网络的中文字符串图片OCR识别方法,属于光学字符识别领域。首先采集若干张待识别图片,将每个图片中的每个像素值分别进行归一化;同时初始化神经网络模型的各类别,初始化每个类别的中心特征向量。然后将每张待识别图片中的归一化像素分别输入到神经网络模型中进行特征提取,得到各图片的深度特征矩阵,通过RoI Pooling进行池化操作后伸展特征,得到长度为L的特征向量。最后将特征向量划分为训练样本和测试样本,训练样本训练神经网络模型;每个测试样本的特征向量分别连接到训练好的神经网络模型的全连接层,输出各测试样本的类别,完成对各图片字符串的整体识别。本发明能够对整张字符串图片进行分类识别,识别精确度更高。

    一种基于神经网络的中文字符串图片OCR识别方法

    公开(公告)号:CN110321830B

    公开(公告)日:2020-11-13

    申请号:CN201910576921.5

    申请日:2019-06-28

    Abstract: 本发明公开了一种基于神经网络的中文字符串图片OCR识别方法,属于光学字符识别领域。首先采集若干张待识别图片,将每个图片中的每个像素值分别进行归一化;同时初始化神经网络模型的各类别,初始化每个类别的中心特征向量。然后将每张待识别图片中的归一化像素分别输入到神经网络模型中进行特征提取,得到各图片的深度特征矩阵,通过RoI Pooling进行池化操作后伸展特征,得到长度为L的特征向量。最后将特征向量划分为训练样本和测试样本,训练样本训练神经网络模型;每个测试样本的特征向量分别连接到训练好的神经网络模型的全连接层,输出各测试样本的类别,完成对各图片字符串的整体识别。本发明能够对整张字符串图片进行分类识别,识别精确度更高。

Patent Agency Ranking