一种基于图神经网络知识蒸馏的图节点分类方法及装置

    公开(公告)号:CN112861936A

    公开(公告)日:2021-05-28

    申请号:CN202110102108.1

    申请日:2021-01-26

    Inventor: 杨成 石川 刘佳玮

    Abstract: 本发明实施例提供了一种基于图神经网络知识蒸馏的图节点分类方法及装置,将所述学生模型得到的第二预测结果,拟合所述教师模型得到的第一预测结果,通过使用教师模型的第一预测结果优化学生模型的,不需要教师模型和学生模型之间的集成或迭代,也能够提高分类精度,简化了优化学生模型的过程;学生模型采用标签传播公式,通过有标签的节点传播到相邻无标签的节点,可以从图结构的先验知识中受益;也通过特征变换公式,预测无标签点集的软标签,可以从特征的先验知识中受益,即数据集中具有硬标签的点集及无标签点集的特征。从而充分的使用先验知识,提高学生模型的分类效果,从而提高分类精度。

    一种基于图神经网络知识蒸馏的图节点分类方法及装置

    公开(公告)号:CN112861936B

    公开(公告)日:2023-06-02

    申请号:CN202110102108.1

    申请日:2021-01-26

    Inventor: 杨成 石川 刘佳玮

    Abstract: 本发明实施例提供了一种基于图神经网络知识蒸馏的图节点分类方法及装置,将所述学生模型得到的第二预测结果,拟合所述教师模型得到的第一预测结果,通过使用教师模型的第一预测结果优化学生模型的,不需要教师模型和学生模型之间的集成或迭代,也能够提高分类精度,简化了优化学生模型的过程;学生模型采用标签传播公式,通过有标签的节点传播到相邻无标签的节点,可以从图结构的先验知识中受益;也通过特征变换公式,预测无标签点集的软标签,可以从特征的先验知识中受益,即数据集中具有硬标签的点集及无标签点集的特征。从而充分的使用先验知识,提高学生模型的分类效果,从而提高分类精度。

Patent Agency Ranking