一种基于元学习与强化学习的推荐系统

    公开(公告)号:CN111199458A

    公开(公告)日:2020-05-26

    申请号:CN201911393658.2

    申请日:2019-12-30

    Abstract: 本发明通过元学习、强化学习和数据挖掘领域的方法,实现了一种基于元学习与强化学习的推荐系统,定义和构建内部更新模块和元更新模块模型,并由上述两模块构成系统模型;系统模型训练过程为:对一次用户的特征数据输入产生推荐的策略,进而根据这个策略求出误差,然后通过内部更新过程中提到的优化方法来优化模型的参数得到下一步策略,根据设定的内部更新的步数得到最终的策略,最后通过输入用户对推荐内容的反馈而产生误差,然后对初始的模型进行求导,并进行更新得到新的模型。在模型训练完成之后,系统接受用户的特征数据,为该用户推荐推内容,并收集这之后用户对于这些内容的反馈。

    一种基于元学习与强化学习的推荐系统

    公开(公告)号:CN111199458B

    公开(公告)日:2023-06-02

    申请号:CN201911393658.2

    申请日:2019-12-30

    Abstract: 本发明通过元学习、强化学习和数据挖掘领域的方法,实现了一种基于元学习与强化学习的推荐系统,定义和构建内部更新模块和元更新模块模型,并由上述两模块构成系统模型;系统模型训练过程为:对一次用户的特征数据输入产生推荐的策略,进而根据这个策略求出误差,然后通过内部更新过程中提到的优化方法来优化模型的参数得到下一步策略,根据设定的内部更新的步数得到最终的策略,最后通过输入用户对推荐内容的反馈而产生误差,然后对初始的模型进行求导,并进行更新得到新的模型。在模型训练完成之后,系统接受用户的特征数据,为该用户推荐推内容,并收集这之后用户对于这些内容的反馈。

    一种针对慢病的阶段性动态用药匹配系统

    公开(公告)号:CN113314195A

    公开(公告)日:2021-08-27

    申请号:CN202110589875.X

    申请日:2021-05-28

    Abstract: 本发明通过信息技术领域的方法,实现了一种针对慢病的阶段性动态用药匹配系统。系统整体结构分为三部分:患者指标编码单元、患者指标编码与药物关系图融合单元、计算输出单元,并采用神经网络方法进行训练后实现;患者指标编码单元应用自注意力机制将其形成患者指标编码,接着利用图卷积神经网络方法将电子健康记录图、药物间相互作用图、药物间序列关系图进行预处理得到药物关系图,结合上两部分的输出结果,将患者指标编码与药物关系图进行融合,将生成结果与患者当前的用药输出至所述计算输出单元运算后,得到最终的当前用药对患者状态的匹配程度。本发明结合病人的编码、历史用药信息以及药物的相关性图,最终形成指标对应下的用药匹配系统。

    一种针对慢病的阶段性动态用药匹配系统

    公开(公告)号:CN113314195B

    公开(公告)日:2022-05-17

    申请号:CN202110589875.X

    申请日:2021-05-28

    Abstract: 本发明通过信息技术领域的方法,实现了一种针对慢病的阶段性动态用药匹配系统。系统整体结构分为三部分:患者指标编码单元、患者指标编码与药物关系图融合单元、计算输出单元,并采用神经网络方法进行训练后实现;患者指标编码单元应用自注意力机制将其形成患者指标编码,接着利用图卷积神经网络方法将电子健康记录图、药物间相互作用图、药物间序列关系图进行预处理得到药物关系图,结合上两部分的输出结果,将患者指标编码与药物关系图进行融合,将生成结果与患者当前的用药输出至所述计算输出单元运算后,得到最终的当前用药对患者状态的匹配程度。本发明结合病人的编码、历史用药信息以及药物的相关性图,最终形成指标对应下的用药匹配系统。

Patent Agency Ranking