一种基于深度强化学习的无人集群任务资源分配方法

    公开(公告)号:CN119521419A

    公开(公告)日:2025-02-25

    申请号:CN202411560454.4

    申请日:2024-11-04

    Abstract: 本发明公开了一种基于深度强化学习的无人集群任务资源分配方法,属于人工智能技术领域,所述方法包括:基于无人集群任务资源分配架构,建立无人集群任务资源分配问题的马尔可夫模型;并设计状态表示方式,用图像来对系统状态进行描述;基于卷积神经网络设计图像状态输入卷积神经网络;以所述图像状态输入卷积神经网络作为DQN模型的当前网络和目标网络,并引入迁移学习方法,构建出迁移深度强化学习模型;基于所述马尔可夫模型以及系统状态的图像描述,采用所述迁移深度强化学习模型进行策略学习,实现无人集群任务资源分配。采用本发明的技术方案,能够减少总体任务资源分配延迟并避免资源浪费。

Patent Agency Ranking