-
公开(公告)号:CN114998605B
公开(公告)日:2023-01-31
申请号:CN202210503164.0
申请日:2022-05-10
Applicant: 北京科技大学
IPC: G06V10/44 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明提供一种恶劣成像条件下图像增强引导的目标检测方法,属于图像增强和计算机目标检测技术领域。所述方法包括:在现有的目标检测网络基础上,加入增强网络分支,将目标检测网络主干网络的头部卷积层特征图和增强网络分支增强后的图像分别都进行最大池化和平均池化后,计算目标检测网络和增强网络分支总的损失函数L;将恶劣成像条件下获取的图像集分别输入目标检测网络和增强网络分支,利用损失函数L对目标检测网络和增强网络分支进行训练;将恶劣成像条件下获取的待检测的图像输入训练好的目标检测网络,输出目标检测结果。采用本发明,能够在提高目标检测的精度的同时,不会增加额外的计算负担。
-
公开(公告)号:CN114998605A
公开(公告)日:2022-09-02
申请号:CN202210503164.0
申请日:2022-05-10
Applicant: 北京科技大学
IPC: G06V10/44 , G06V10/764 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明提供一种恶劣成像条件下图像增强引导的目标检测方法,属于图像增强和计算机目标检测技术领域。所述方法包括:在现有的目标检测网络基础上,加入增强网络分支,将目标检测网络主干网络的头部卷积层特征图和增强网络分支增强后的图像分别都进行最大池化和平均池化后,计算目标检测网络和增强网络分支总的损失函数L;将恶劣成像条件下获取的图像集分别输入目标检测网络和增强网络分支,利用损失函数L对目标检测网络和增强网络分支进行训练;将恶劣成像条件下获取的待检测的图像输入训练好的目标检测网络,输出目标检测结果。采用本发明,能够在提高目标检测的精度的同时,不会增加额外的计算负担。
-