一种基于条件扩散模型的时间序列数据预测方法和系统

    公开(公告)号:CN117076931B

    公开(公告)日:2024-01-12

    申请号:CN202311315844.0

    申请日:2023-10-12

    Abstract: 本发明提供一种基于条件扩散模型的时间序列数据预测方法和系统,包括:将训练集内天动态时序数据,经过特征编码器得到高维动态时序数据;搭建以条件输入Transformer为主干的条件扩散模型,将训练集内 天高维动态时序数据作为加噪数据,以及 天的高维动态时序数据与静态数据融合后的条件特征,输入条件扩散模型进行训练;将待预测的第一动态时序数据升维后的高维动态时序数据与第一静态数据融合后的条件特征,输入条件扩散模型,执行去噪操作,预测高维动态时序特征输入特征解码器,获得预测的第二动态时序数据。本发明支持长时间维度建模,构建识别精度高泛化性好的产量预测方法。

    一种基于条件扩散模型的时间序列数据预测方法和系统

    公开(公告)号:CN117076931A

    公开(公告)日:2023-11-17

    申请号:CN202311315844.0

    申请日:2023-10-12

    Abstract: 本发明提供一种基于条件扩散模型的时间序列数据预测方法和系统,包括:将训练集内#imgabs0#天动态时序数据,经过特征编码器得到高维动态时序数据;搭建以条件输入Transformer为主干的条件扩散模型,将训练集内#imgabs1#天高维动态时序数据作为加噪数据,以及#imgabs2#天的高维动态时序数据与静态数据融合后的条件特征,输入条件扩散模型进行训练;将待预测的第一动态时序数据升维后的高维动态时序数据与第一静态数据融合后的条件特征,输入条件扩散模型,执行去噪操作,预测高维动态时序特征输入特征解码器,获得预测的第二动态时序数据。本发明支持长时间维度建模,构建识别精度高泛化性好的产量预测方法。

Patent Agency Ranking