一种代价敏感的集成学习分类方法及系统

    公开(公告)号:CN112382382B

    公开(公告)日:2024-04-12

    申请号:CN202011143487.0

    申请日:2020-10-23

    Abstract: 本发明公开了一种代价敏感的集成学习分类方法及系统,该方法包括:获取样本数据集,并将样本数据集分成训练样本集和测试样本集;基于训练样本集对多个不同类型的分类器分别进行训练,并基于测试样本集对训练好的各分类器分别进行分类测试,得到各分类器的分类结果;基于各分类器的分类结果为每一分类器分配对应的权重;基于各分类器的权重,对各分类器进行加权集成,得到集成分类器;利用集成分类器对待测样本进行分类,得到相应的分类结果。本发明使集成学习模型具有各个基学习器的优点,弱化各个基学习器的缺点。并通过权重分配和调整集成学习的门限,改善了集成分类器的分类效果。

    一种代价敏感的集成学习分类方法及系统

    公开(公告)号:CN112382382A

    公开(公告)日:2021-02-19

    申请号:CN202011143487.0

    申请日:2020-10-23

    Abstract: 本发明公开了一种代价敏感的集成学习分类方法及系统,该方法包括:获取样本数据集,并将样本数据集分成训练样本集和测试样本集;基于训练样本集对多个不同类型的分类器分别进行训练,并基于测试样本集对训练好的各分类器分别进行分类测试,得到各分类器的分类结果;基于各分类器的分类结果为每一分类器分配对应的权重;基于各分类器的权重,对各分类器进行加权集成,得到集成分类器;利用集成分类器对待测样本进行分类,得到相应的分类结果。本发明使集成学习模型具有各个基学习器的优点,弱化各个基学习器的缺点。并通过权重分配和调整集成学习的门限,改善了集成分类器的分类效果。

Patent Agency Ranking