-
公开(公告)号:CN117421762A
公开(公告)日:2024-01-19
申请号:CN202311049045.3
申请日:2023-08-21
Applicant: 北京理工大学
Abstract: 本发明提出了基于差分隐私和同态加密的联邦学习隐私保护方法,属于网络安全数据信息隐私保护技术领域。本发明通过在本地模型训练过程中向梯度添加少量噪声,有效的抵御了成员推断攻击以及其他可能的隐私攻击方法,能够保护隐私数据。通过使用门限同态加密算法对训练过程中的模型参数进行加密,各参与方拥有不同的私钥,相较于传统的同态加密算法,大大降低了因某参与方密钥泄露而对整个联邦学习隐私造成毁灭性打击的风险。本方法中的各参与方节点对框架基本架构没有结构性影响,参与方的增删只影响门限参数的设定,能够灵活适应参与方数目的动态调整情况。本发明为充分实现联邦学习数据隐私、实现数据信息的安全交流与整合,提供了有效技术方案。