一种基于遗传神经网络的曲轴疲劳寿命预测方法

    公开(公告)号:CN102693450A

    公开(公告)日:2012-09-26

    申请号:CN201210150607.9

    申请日:2012-05-16

    Abstract: 本发明公开了一种基于遗传神经网络的曲轴疲劳寿命预测方法,属于内燃机曲轴疲劳寿命测试领域。目的是为了解决DC谐振式曲轴疲劳寿命测试机对曲轴测试具有破坏性和测试时间长等不足。其原理是利用传统DC谐振式曲轴疲劳寿命测试机对曲轴测试的历史数据归一化得到训练样本集;通过遗传算法优化BP人工神经网络模型;使用训练样本集对基于遗传算法优化后的BP人工神经网络进行迭代训练得到训练好的BP人工神经网络预测模型;使用该预测模型对曲轴疲劳寿命快速预测。本发明基于遗传算法优化BP人工神经网络,避免了单一BP神经网络的“过拟合”问题,可有效提高训练速度和预测精度;短时间内快速预测曲轴疲劳寿命而且不破坏曲轴质量,能够对整个生产批次曲轴进行批量测试。

    一种双语最大名词组块分离-融合的翻译方法

    公开(公告)号:CN103942192B

    公开(公告)日:2016-08-17

    申请号:CN201310593728.5

    申请日:2013-11-21

    Abstract: 本发明公开了一种双语最大名词组块分离?融合的翻译方法,属于计算机科学中的自然语言处理技术领域。在基于树的统计机器翻译模型的中引入了BMNCs分离?融合翻译的思想,把句子翻译转化为句子中所有双语最大名词组块的翻译和句子骨架的翻译。本方法降低了翻译难度和翻译时间,提升了翻译准确率,尤其适合在即时翻译中针对较长句子的翻译。

    一种基于协同训练的双语命名实体识别方法

    公开(公告)号:CN103853710B

    公开(公告)日:2016-06-08

    申请号:CN201310593746.3

    申请日:2013-11-21

    Abstract: 本发明公开了一种基于双语协同训练的命名实体的识别方法,属于计算机科学中的自然语言处理技术领域。把平行的汉语句子和英语句子这两个数据集看作为一个数据集的两个不同的视图进行双语协同训练。在投射过程中使用一个对数线性模型修正投射标记,在利用模型对未见示例进行预测时引入命名实体双语对齐标注一致率作为标记置信度估计的衡量指标。本方法对比现有技术,降低了命名实体识别的领域依赖性,融合了双语识别的优势,解决了单语识别中的部分识别歧义问题,尤其适合用于大规模语料的双语命名实体同步识别。

    一种基于遗传神经网络的曲轴疲劳寿命预测方法

    公开(公告)号:CN102693450B

    公开(公告)日:2014-11-12

    申请号:CN201210150607.9

    申请日:2012-05-16

    Abstract: 本发明公开了一种基于遗传神经网络的曲轴疲劳寿命预测方法,属于内燃机曲轴疲劳寿命测试领域。目的是为了解决DC谐振式曲轴疲劳寿命测试机对曲轴测试具有破坏性和测试时间长等不足。其原理是利用传统DC谐振式曲轴疲劳寿命测试机对曲轴测试的历史数据归一化得到训练样本集;通过遗传算法优化BP人工神经网络模型;使用训练样本集对基于遗传算法优化后的BP人工神经网络进行迭代训练得到训练好的BP人工神经网络预测模型;使用该预测模型对曲轴疲劳寿命快速预测。本发明基于遗传算法优化BP人工神经网络,避免了单一BP神经网络的“过拟合”问题,可有效提高训练速度和预测精度;短时间内快速预测曲轴疲劳寿命而且不破坏曲轴质量,能够对整个生产批次曲轴进行批量测试。

    一种双语最大名词组块分离-融合的翻译方法

    公开(公告)号:CN103942192A

    公开(公告)日:2014-07-23

    申请号:CN201310593728.5

    申请日:2013-11-21

    Abstract: 本发明公开了一种双语最大名词组块分离-融合的翻译方法,属于计算机科学中的自然语言处理技术领域。在基于树的统计机器翻译模型的中引入了BMNCs分离-融合翻译的思想,把句子翻译转化为句子中所有双语最大名词组块的翻译和句子骨架的翻译。本方法降低了翻译难度和翻译时间,提升了翻译准确率,尤其适合在即时翻译中针对较长句子的翻译。

    一种基于协同训练的双语命名实体识别方法

    公开(公告)号:CN103853710A

    公开(公告)日:2014-06-11

    申请号:CN201310593746.3

    申请日:2013-11-21

    Abstract: 本发明公开了一种基于双语协同训练的命名实体的识别方法,属于计算机科学中的自然语言处理技术领域。把平行的汉语句子和英语句子这两个数据集看作为一个数据集的两个不同的视图进行双语协同训练。在投射过程中使用一个对数线性模型修正投射标记,在利用模型对未见示例进行预测时引入命名实体双语对齐标注一致率作为标记置信度估计的衡量指标。本方法对比现有技术,降低了命名实体识别的领域依赖性,融合了双语识别的优势,解决了单语识别中的部分识别歧义问题,尤其适合用于大规模语料的双语命名实体同步识别。

Patent Agency Ranking