基于统计约束损失函数的脑梗塞病灶自动分割方法

    公开(公告)号:CN110533668B

    公开(公告)日:2021-09-21

    申请号:CN201910693876.1

    申请日:2019-07-30

    Abstract: 本发明公开了基于统计约束损失函数的脑梗塞病灶自动分割方法,能够提升病灶分割结果的准确性。其主要的思路为:获取脑部弥散加权磁共振图像进行预处理,获得b0图像和DWI图像并计算出表观扩散系数ADC真值图像;构建卷积神经网络,取手工标注的病灶标注图像、DWI图像以及ADC真值图像输入到卷积神经网络中进行迭代训练,卷积神经网络中预先定义四项损失函数,包括Dice系数损失函数、交叉熵损失函数、体积误差损失函数以及ADC值误差损失函数;在每一次迭代过程中,根据卷积神经网络的分割结果和病灶标注图像对四项损失函数进行优化;迭代训练结束后获得训练好的卷积神经网络;采用训练好的卷积神经网络对脑部弥散加权磁共振图像进行脑梗塞病灶的自动分割。

    基于统计约束损失函数的脑梗塞病灶自动分割方法

    公开(公告)号:CN110533668A

    公开(公告)日:2019-12-03

    申请号:CN201910693876.1

    申请日:2019-07-30

    Abstract: 本发明公开了基于统计约束损失函数的脑梗塞病灶自动分割方法,能够提升病灶分割结果的准确性。其主要的思路为:获取脑部弥散加权磁共振图像进行预处理,获得b0图像和DWI图像并计算出表观扩散系数ADC真值图像;构建卷积神经网络,取手工标注的病灶标注图像、DWI图像以及ADC真值图像输入到卷积神经网络中进行迭代训练,卷积神经网络中预先定义四项损失函数,包括Dice系数损失函数、交叉熵损失函数、体积误差损失函数以及ADC值误差损失函数;在每一次迭代过程中,根据卷积神经网络的分割结果和病灶标注图像对四项损失函数进行优化;迭代训练结束后获得训练好的卷积神经网络;采用训练好的卷积神经网络对脑部弥散加权磁共振图像进行脑梗塞病灶的自动分割。

Patent Agency Ranking