-
公开(公告)号:CN111125358A
公开(公告)日:2020-05-08
申请号:CN201911302220.9
申请日:2019-12-17
Applicant: 北京工商大学
Abstract: 本发明公开一种基于超图的文本分类方法,包括:步骤一、构建语料库和语料库的关键词库,基于语料库生成超图,得到超图的超边和结点;步骤二、基于共现窗口计算关键词的邻接矩阵;步骤三、对语料库中的每一个文档通过超边向量表示,形成超边矩阵;步骤四、计算超边之间的相似度,构建超边的相似度矩阵;步骤五、构建由词向量组成的超图结点特征矩阵;步骤六、使用图神经网络模型对超边进行分类,得到语料库中每个文档类别的第一次预测概率;步骤七、基于文档的真实标签,采用随机梯度下降算法更新图神经网络模型的参数矩阵,完成语料库中无标签文本的分类;本发明实现了对语料库中无标签文本的准确分类。
-
公开(公告)号:CN111125358B
公开(公告)日:2023-07-11
申请号:CN201911302220.9
申请日:2019-12-17
Applicant: 北京工商大学
Abstract: 本发明公开一种基于超图的文本分类方法,包括:步骤一、构建语料库和语料库的关键词库,基于语料库生成超图,得到超图的超边和结点;步骤二、基于共现窗口计算关键词的邻接矩阵;步骤三、对语料库中的每一个文档通过超边向量表示,形成超边矩阵;步骤四、计算超边之间的相似度,构建超边的相似度矩阵;步骤五、构建由词向量组成的超图结点特征矩阵;步骤六、使用图神经网络模型对超边进行分类,得到语料库中每个文档类别的第一次预测概率;步骤七、基于文档的真实标签,采用随机梯度下降算法更新图神经网络模型的参数矩阵,完成语料库中无标签文本的分类;本发明实现了对语料库中无标签文本的准确分类。
-