一种基于FCN和CNN的云图分割方法

    公开(公告)号:CN107016677A

    公开(公告)日:2017-08-04

    申请号:CN201710182281.0

    申请日:2017-03-24

    Abstract: 一种基于FCN和CNN的云图分割方法属于计算机视觉的图像分割领域。其特征在于:首先通过超像素对云图中每个像素点的近邻域实现相应的聚类同时将云图输入到不同步长的全卷积神经网络FCN32s和FCN8s中,实现云图的预分割结果;FCN32s结果图中的黑色区域一定是云图中的一部分“非云”区域,FCN8s结果图中的白色区域一定是云图中的一部分“云”区域;剩下不确定的区域即灰色区域需要通过深度卷积神经网络CNN来确定,需要选取超像素区域中的关键像素来代表超像素区域的特征,像素的特征通过CNN网络来判断是“云”或者是“非云”。本发明发现而精度与MR‑CNN、SP‑CNN相当,但是速度相比于MR‑CNN提高了880倍,相比于SP‑CNN提高了1.657倍。

    一种基于FCN和CNN的云图分割方法

    公开(公告)号:CN107016677B

    公开(公告)日:2020-01-17

    申请号:CN201710182281.0

    申请日:2017-03-24

    Abstract: 一种基于FCN和CNN的云图分割方法属于计算机视觉的图像分割领域。其特征在于:首先通过超像素对云图中每个像素点的近邻域实现相应的聚类同时将云图输入到不同步长的全卷积神经网络FCN32s和FCN8s中,实现云图的预分割结果;FCN32s结果图中的黑色区域一定是云图中的一部分“非云”区域,FCN8s结果图中的白色区域一定是云图中的一部分“云”区域;剩下不确定的区域即灰色区域需要通过深度卷积神经网络CNN来确定,需要选取超像素区域中的关键像素来代表超像素区域的特征,像素的特征通过CNN网络来判断是“云”或者是“非云”。本发明发现而精度与MR‑CNN、SP‑CNN相当,但是速度相比于MR‑CNN提高了880倍,相比于SP‑CNN提高了1.657倍。

Patent Agency Ranking