基于编码-解码网络的深度运动分离方法

    公开(公告)号:CN113920153B

    公开(公告)日:2024-05-28

    申请号:CN202111076361.0

    申请日:2021-09-15

    Abstract: 基于编码‑解码网络的深度运动分离方法属于图像处理领域。从原始混合运动中估计全局运动和局部运动是有必要的。现有的全局运动估计算法无法表达复杂场景下的全部全局运动。同时,体育比赛转播视频等存在静止的记分牌等区域,对局部运动估计造成了影响。本发明提出了一种端到端的全局与局部运动估计网络,利用自动编码器将原始运动编码为代表全部全局运动的低维向量后解码为全局运动场。网络通过混合运动场中全局运动区域的运动值进行弱监督学习。进一步,Attention U‑net将粗糙局部运动中的记分牌等噪声区域的运动值去除,得到纯净的局部运动。在行为识别数据集NCAA,UCF‑101和单应性估计数据集DHE上的实验表明,该方法的全局运动和局部运动估计结果好于现有方法。

    基于全局运动的视觉目标对齐方法

    公开(公告)号:CN112508998B

    公开(公告)日:2025-01-03

    申请号:CN202011256300.8

    申请日:2020-11-11

    Abstract: 本发明提出了一种基于全局运动的视觉目标对齐方法,为了使冰壶项目运动员的训练更为科技化,能够更好的观察冰壶完整的运动路径。本方法通过分析冰壶运动视频可以获得视频中冰壶的跟踪数据,并且通过计算可以得到相机镜头的运动,用该运动对视频中的场地进行还原处理,进而得到冰壶场地的运动数据。将场地运动数据和冰壶跟踪数据相结合,最后计算得到完整的冰壶运动轨迹,输出可视化结果。通过测试验证了该方法的可行性,具有重要应用价值。

    基于编码-解码网络的深度运动分离方法

    公开(公告)号:CN113920153A

    公开(公告)日:2022-01-11

    申请号:CN202111076361.0

    申请日:2021-09-15

    Abstract: 基于编码‑解码网络的深度运动分离方法属于图像处理领域。从原始混合运动中估计全局运动和局部运动是有必要的。现有的全局运动估计算法无法表达复杂场景下的全部全局运动。同时,体育比赛转播视频等存在静止的记分牌等区域,对局部运动估计造成了影响。本发明提出了一种端到端的全局与局部运动估计网络,利用自动编码器将原始运动编码为代表全部全局运动的低维向量后解码为全局运动场。网络通过混合运动场中全局运动区域的运动值进行弱监督学习。进一步,Attention U‑net将粗糙局部运动中的记分牌等噪声区域的运动值去除,得到纯净的局部运动。在行为识别数据集NCAA,UCF‑101和单应性估计数据集DHE上的实验表明,该方法的全局运动和局部运动估计结果好于现有方法。

    基于全局运动的视觉目标对齐方法

    公开(公告)号:CN112508998A

    公开(公告)日:2021-03-16

    申请号:CN202011256300.8

    申请日:2020-11-11

    Abstract: 本发明提出了一种基于全局运动的视觉目标对齐方法,为了使冰壶项目运动员的训练更为科技化,能够更好的观察冰壶完整的运动路径。本方法通过分析冰壶运动视频可以获得视频中冰壶的跟踪数据,并且通过计算可以得到相机镜头的运动,用该运动对视频中的场地进行还原处理,进而得到冰壶场地的运动数据。将场地运动数据和冰壶跟踪数据相结合,最后计算得到完整的冰壶运动轨迹,输出可视化结果。通过测试验证了该方法的可行性,具有重要应用价值。

Patent Agency Ranking