基于弱化低质量负样本的时序知识图谱补全方法

    公开(公告)号:CN116431820A

    公开(公告)日:2023-07-14

    申请号:CN202310266322.X

    申请日:2023-03-20

    Abstract: 本发明公开了基于弱化低质量负样本的时序知识图谱补全方法,为了平衡负样本多样性和负样本质量,该方法使用高质量和中等质量的负样本以增强模型判别能力,即弱化低质量负样本产生的影响。该方法提出的低质量负样本选择和弱化模块可以挑选出低质量负样本并调节它们的分数以弱化低质量负样本的消极影响。在交叉熵损失中引入了自适应加权负样本损失正则化项,该正则化项计算了每个负样本的损失值,并自适应地为每个负样本损失值分配不同的权重,以充分利用不同质量负样本的潜在信息。自适应加权负样本损失正则化项与低质量负样本选择和弱化模块都起到了积极影响。

    基于大语言模型的时序知识图谱补全方法

    公开(公告)号:CN118779463A

    公开(公告)日:2024-10-15

    申请号:CN202410780089.1

    申请日:2024-06-17

    Abstract: 本发明公开了基于大语言模型的时序知识图谱补全方法,设计了一个用于时序知识图谱补全的框架时序知识图谱‑大语言模型框架(TKG‑LLM)。将四元组中的实体、关系以及时间信息拼接为文本序列,通过设计特定任务的提示约束大语言模型的输出,将提示、文本序列、以及辅助提示按照一定的规则进行拼接作为大语言模型的输入。为了增强大语言模型在时序知识图谱补全领域的专业性和输出可控性,使用指令微调技术以预测实体/关系或评估四元组的合理性,缓解了大语言模型在该任务中的幻觉问题。

Patent Agency Ranking