一种面向持续想象脑电信号的分类方法

    公开(公告)号:CN103345640B

    公开(公告)日:2016-08-10

    申请号:CN201310273395.8

    申请日:2013-07-02

    Abstract: 本发明属于模式识别领域,公开了一种面向持续想象脑电信号的分类策略。首先,假设不同想象任务之间存在转换点,转换点处样本间的欧几里得距离要大于转换点之间的样本间距离,通过设定样本间距离阈值检测出转换点;其次,认为持续想象同一任务时,会因注意力涣散、疲倦等因素导致信号受噪声污染,该策略加入样本纯化思想,通过设定样本间距离范围,从与任务对应的所有样本中筛选出部分样本,并返回这部分样本中的大多数类别作为该任务所有样本的类别。本发明通过充分考虑相邻样本之间的联系,提高了整体样本的识别率,非常适合对持续的脑电信号进行离线分析。

    一种面向持续想象脑电信号的分类方法

    公开(公告)号:CN103345640A

    公开(公告)日:2013-10-09

    申请号:CN201310273395.8

    申请日:2013-07-02

    Abstract: 本发明属于模式识别领域,公开了一种面向持续想象脑电信号的分类方法。首先,假设不同想象任务之间存在转换点,转换点处样本间的欧几里得距离要大于转换点之间的样本间距离,通过设定样本间距离阈值检测出转换点;其次,认为持续想象同一任务时,会因注意力涣散、疲倦等因素导致信号受噪声污染,该策略加入样本纯化思想,通过设定样本间距离范围,从与任务对应的所有样本中筛选出部分样本,并返回这部分样本中的大多数类别作为该任务所有样本的类别。本发明通过充分考虑相邻样本之间的联系,提高了整体样本的识别率,非常适合对持续的脑电信号进行离线分析。

    基于超限学习机自编码的运动想象脑电信号特征的提取方法

    公开(公告)号:CN104799852A

    公开(公告)日:2015-07-29

    申请号:CN201510256463.9

    申请日:2015-05-19

    CPC classification number: A61B5/0476 A61B5/04012 A61B5/72 A61B5/7264 G06K9/62

    Abstract: 本发明公开了基于超限学习机自编码的运动想象脑电信号特征的提取方法,包括:筛选训练数据集和测试数据集;利用训练数据集训练多个超限学习机模型;从多个经训练数据集训练后的超限学习机模型中,筛选出对测试数据集的分类正确率最高的超限学习机模型;利用筛选出的超限学习机计算待测脑电信号数据的输出权重矩阵;计算待测脑电信号数据的输出权重矩阵的奇异值,该奇异值即为待测脑电信号数据的数据特征。在使用相同分类器的前提下,本发明公开的方法提取的脑电信号特征数据的分类准确率高达86.69%,比利用传统的分类方法高出10.24%。

    基于超限学习机自编码的运动想象脑电信号特征的提取方法

    公开(公告)号:CN104799852B

    公开(公告)日:2018-05-08

    申请号:CN201510256463.9

    申请日:2015-05-19

    Abstract: 本发明公开了基于超限学习机自编码的运动想象脑电信号特征的提取方法,包括:筛选训练数据集和测试数据集;利用训练数据集训练多个超限学习机模型;从多个经训练数据集训练后的超限学习机模型中,筛选出对测试数据集的分类正确率最高的超限学习机模型;利用筛选出的超限学习机计算待测脑电信号数据的输出权重矩阵;计算待测脑电信号数据的输出权重矩阵的奇异值,该奇异值即为待测脑电信号数据的数据特征。在使用相同分类器的前提下,本发明公开的方法提取的脑电信号特征数据的分类准确率高达86.69%,比利用传统的分类方法高出10.24%。

    基于多层超限学习机的运动想象脑电信号分类方法

    公开(公告)号:CN106485205A

    公开(公告)日:2017-03-08

    申请号:CN201610836006.1

    申请日:2016-09-20

    CPC classification number: G06K9/0055

    Abstract: 本发明公开了基于多层超限学习机的运动想象脑电信号分类方法,属于模式识别和脑-机接口领域。脑电信号的分类识别主要包括脑电信号的特征提取和特征分类两部分。首先,对每一样本的原始信号进行加窗分段,得到S段子信号;然后,分别对上步骤分段得到的S段子信号进行主成分分析和线性判别分析,并将最终的S个K-1维特征向量进行组合,得到S*(K-1)维的特征;最后,将所有样本的特征送入多层超限学习机分类器中,得到最后的分类结果。与现有技术相比,本发明的方法具有以下优点:传统的ELM算法是单隐层结构,对于提取复杂信号的特征有很大的局限性,本发明通过增加隐层个数提取深层信息,从而提高了分类正确率,并且保持了ELM低耗时的优势。

    基于约束极速学习机的脑电信号分类方法

    公开(公告)号:CN104361345A

    公开(公告)日:2015-02-18

    申请号:CN201410529244.9

    申请日:2014-10-10

    CPC classification number: G06K9/00523 G06K9/00536

    Abstract: 本发明涉及一种基于约束极速学习机的脑电信号分类方法,包括采用固定的滑动时间窗将原始运动想象脑电信号平均分为S段子信号;对每一段子信号通过主成分分析方法进行降维;对降维后的特征向量通过线性判别分析方法再次降维,对于K种类别的脑电数据,得到K-1维的特征向量;对每一段子信号进行处理,得到S个K-1维的特征向量,组合后得到S*(K-1)维的特征;将S*(K-1)维特征送入约束极速学习机(CELM)进行分类。本发明应用CELM通过改变输入层节点与隐层节点之间的权重的选取方式,限制权重参数的随机性,从而既能提高运动想象脑电信号的分类准确率,又能保持ELM训练速度快的优势。

Patent Agency Ranking