-
公开(公告)号:CN110688585A
公开(公告)日:2020-01-14
申请号:CN201910912752.8
申请日:2019-09-25
Applicant: 北京工业大学
IPC: G06F16/9536
Abstract: 本发明公开了一种基于神经网络和协同过滤的个性化电影推荐方法,采用Bert神经网络对电影情节进行特征提取,形成一个关于item的特征矩阵与Funk-SVD形成衔接,再利用矩阵分解技术产生一个完整的U-I矩阵,得到所有预测评分的一种快速有效的方法。先利用Bert神经网络对电影情节进行特征提取,并得到一个关于电影item的特征矩阵;然后将得到的特征矩阵与协同过滤算法Funk-SVD算法衔接,再利用矩阵分解技术,梯度下降法进行优化,得到一个误差最小的完整的U-I矩阵,最终获得所有预测评分等一系列操作;本发明在原有显式反馈和隐式反馈的基础上,加入辅助信息即电影情节,更加准确的获取item的特征矩阵,使最小误差降低了2.40%,提高了预测的精确度。
-
公开(公告)号:CN110688585B
公开(公告)日:2022-04-19
申请号:CN201910912752.8
申请日:2019-09-25
Applicant: 北京工业大学
IPC: G06F16/9536
Abstract: 本发明公开了一种基于神经网络和协同过滤的个性化电影推荐方法,采用Bert神经网络对电影情节进行特征提取,形成一个关于item的特征矩阵与Funk‑SVD形成衔接,再利用矩阵分解技术产生一个完整的U‑I矩阵,得到所有预测评分的一种快速有效的方法。先利用Bert神经网络对电影情节进行特征提取,并得到一个关于电影item的特征矩阵;然后将得到的特征矩阵与协同过滤算法Funk‑SVD算法衔接,再利用矩阵分解技术,梯度下降法进行优化,得到一个误差最小的完整的U‑I矩阵,最终获得所有预测评分等一系列操作;本发明在原有显式反馈和隐式反馈的基础上,加入辅助信息即电影情节,更加准确的获取item的特征矩阵,使最小误差降低了2.40%,提高了预测的精确度。
-