-
公开(公告)号:CN116129115A
公开(公告)日:2023-05-16
申请号:CN202310010194.2
申请日:2023-01-04
Applicant: 北京工业大学
Abstract: 本发明公开了一种基于动态卷积注意力的图像语义分割方法,以实现对原始图像的语义分割,利用ResNet101网络对原始图像进行特征提取,生成高层特征和低层特征;将高层特征通过不同尺度的自适应池化层,生成四组不同尺寸的标准卷积核,利用卷积层对标准卷积核进行线性组合,生成初始动态卷积核;利用空间注意力机制增强初始动态卷积核的特征提取能力,生成最终动态卷积核,用生成不同尺寸的最终动态卷积核实现多尺度处理;利用高层特征的语义信息,生成低层特征的通道权重,对低层特征的通道信息进行重新加权,将低层特征和高层特征进行特征融合。本发明能够有效的提取多尺度信息,利用高层特征的语义信息和低层特征的细节信息,提高语义分割的准确率。