-
公开(公告)号:CN111340771B
公开(公告)日:2024-04-09
申请号:CN202010110068.0
申请日:2020-02-23
Applicant: 北京工业大学
Abstract: 一种融合视觉信息丰富度和宽深度联合学习的细颗粒物实时监测方法属于智能环境感知领域,针对目前流行的基于电化学传感器的细颗粒物监测方法存在空间分布密度低、时间延迟等缺点。该方法将视觉信息丰富度测量与宽深度联合学习(VAWD)相结合,实现细颗粒物的实时监测。首先,细颗粒物浓度的增长会降低视觉信息丰富度,利用VAWD模型从变换空间中提取的三种特征来测量给定照片的视觉信息丰富度。其次,为了同时具备记忆和泛化的优点,设计了宽深度联合学习神经网络来学习上述提取特征与近地面的细颗粒物浓度之间的非线性映射。实验表明:提取的特征的有效性和VAWD模型相对于最先进的方法具有很大的优越性。
-
公开(公告)号:CN112418005A
公开(公告)日:2021-02-26
申请号:CN202011226816.8
申请日:2020-11-06
Applicant: 北京工业大学
Abstract: 本发明公开了一种基于反向辐射注意力金字塔网络的烟雾多分类识别方法,判断放空火炬工作状态。该网络首先由三个串联的金字塔模块构成,这三个金字塔块由3、4和5个基本卷积模块组成。然后,在每个金字塔模块中引入注意机制进行特征滤波。最后,通过反向辐射连接各金字塔模块的所有前馈输出,系统全面融合低、中、高层特征。基于反向辐射注意力金字塔网络的烟雾多分类识别方法属于大气环境保护领域和机器学习领域。
-
公开(公告)号:CN111340771A
公开(公告)日:2020-06-26
申请号:CN202010110068.0
申请日:2020-02-23
Applicant: 北京工业大学
Abstract: 一种融合视觉信息丰富度和宽深度联合学习的细颗粒物实时监测方法属于智能环境感知领域,针对目前流行的基于电化学传感器的细颗粒物监测方法存在空间分布密度低、时间延迟等缺点。该方法将视觉信息丰富度测量与宽深度联合学习(VAWD)相结合,实现细颗粒物的实时监测。首先,细颗粒物浓度的增长会降低视觉信息丰富度,利用VAWD模型从变换空间中提取的三种特征来测量给定照片的视觉信息丰富度。其次,为了同时具备记忆和泛化的优点,设计了宽深度联合学习神经网络来学习上述提取特征与近地面的细颗粒物浓度之间的非线性映射。实验表明:提取的特征的有效性和VAWD模型相对于最先进的方法具有很大的优越性。
-
公开(公告)号:CN112418005B
公开(公告)日:2024-05-28
申请号:CN202011226816.8
申请日:2020-11-06
Applicant: 北京工业大学
IPC: G06V20/40 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于反向辐射注意力金字塔网络的烟雾多分类识别方法,判断放空火炬工作状态。该网络首先由三个串联的金字塔模块构成,这三个金字塔块由3、4和5个基本卷积模块组成。然后,在每个金字塔模块中引入注意机制进行特征滤波。最后,通过反向辐射连接各金字塔模块的所有前馈输出,系统全面融合低、中、高层特征。基于反向辐射注意力金字塔网络的烟雾多分类识别方法属于大气环境保护领域和机器学习领域。
-
-
-