一种基于图孪生网络的推荐方法

    公开(公告)号:CN111881342A

    公开(公告)日:2020-11-03

    申请号:CN202010578945.7

    申请日:2020-06-23

    Abstract: 一种基于图孪生网络的推荐方法应用于个性化推荐领域。现有方法(1)缺乏知识扩展性,比如难以有效融合用户社交关系信息;(2)多层特征信息传播范式下,学到的特征会出现过平滑问题。因此本发明提出了一种基于图孪生网络的推荐方法,通过用户、物品的交互信息建模用户关系图和物品关系图,通过本发明设计的图卷积层,以两个同构有向图的形式分别挖掘用户关系信息和物品关系信息。最后,通过图交互层聚合两个通道的用户特征和物品特征,充分提取用户偏好信息和物品属性信息。本发明有效保持U-I特征特性,显著提高个性化推荐准确率,具备良好的模型可扩展性,有着广阔的应用前景。

    一种基于知识图谱辅助的用户多维度兴趣抽取方法

    公开(公告)号:CN113407834B

    公开(公告)日:2025-02-25

    申请号:CN202110674480.X

    申请日:2021-06-18

    Abstract: 本发明公开了一种基于知识图谱辅助的用户多维度兴趣抽取方法。准确的用户兴趣表达是提升推荐性能的关键点之一,现有的推荐算法大多是采用一个单一的、混合的向量表示用户兴趣,并不能从多个维度来表达用户兴趣,这种对用户兴趣统一建模的方法忽略了隐向量中的纠缠,容易得到次优的用户兴趣表达,同时也缺乏一定的可解释性。然而,由于交互数据的稀疏性问题,在历史交互数据中学习用户的多维度兴趣表达是非常有难度的,目前相关的研究较少。本发明设计了一个知识图谱辅助的用户多维度兴趣抽取网络,可以得到多维度的用户兴趣表达,同时提供一定的可解释性。我们在音乐和书籍的数据集上验证了该方法的有效性。

    一种基于图孪生网络的推荐方法

    公开(公告)号:CN111881342B

    公开(公告)日:2024-12-10

    申请号:CN202010578945.7

    申请日:2020-06-23

    Abstract: 一种基于图孪生网络的推荐方法应用于个性化推荐领域。现有方法(1)缺乏知识扩展性,比如难以有效融合用户社交关系信息;(2)多层特征信息传播范式下,学到的特征会出现过平滑问题。因此本发明提出了一种基于图孪生网络的推荐方法,通过用户、物品的交互信息建模用户关系图和物品关系图,通过本发明设计的图卷积层,以两个同构有向图的形式分别挖掘用户关系信息和物品关系信息。最后,通过图交互层聚合两个通道的用户特征和物品特征,充分提取用户偏好信息和物品属性信息。本发明有效保持U‑I特征特性,显著提高个性化推荐准确率,具备良好的模型可扩展性,有着广阔的应用前景。

    一种基于知识图谱辅助的用户多维度兴趣抽取方法

    公开(公告)号:CN113407834A

    公开(公告)日:2021-09-17

    申请号:CN202110674480.X

    申请日:2021-06-18

    Abstract: 本发明公开了一种基于知识图谱辅助的用户多维度兴趣抽取方法。准确的用户兴趣表达是提升推荐性能的关键点之一,现有的推荐算法大多是采用一个单一的、混合的向量表示用户兴趣,并不能从多个维度来表达用户兴趣,这种对用户兴趣统一建模的方法忽略了隐向量中的纠缠,容易得到次优的用户兴趣表达,同时也缺乏一定的可解释性。然而,由于交互数据的稀疏性问题,在历史交互数据中学习用户的多维度兴趣表达是非常有难度的,目前相关的研究较少。本发明设计了一个知识图谱辅助的用户多维度兴趣抽取网络,可以得到多维度的用户兴趣表达,同时提供一定的可解释性。我们在音乐和书籍的数据集上验证了该方法的有效性。

Patent Agency Ranking